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SUMMARY

Reference genomes of root microbes are essential for metagenomic analyses and mechanistic studies of
crop root microbiomes. By combining high-throughput bacterial cultivation with metagenomic sequencing,
we constructed comprehensive bacterial and viral genome collections from the roots of wheat, rice, maize,
and Medicago. The crop root bacterial genome collection (CRBC) significantly expands the quantity and
phylogenetic diversity of publicly available crop root bacterial genomes, with 6,699 bacterial genomes
(68.9% from isolates) and 1,817 undefined species, expanding crop root bacterial diversity by 290.6%.
The crop root viral genome collection (CRVC) contains 9,736 non-redundant viral genomes, with 1,572 pre-
viously unreported genus-level clusters in crop root microbiomes. From these, we identified conserved bac-
terial functions enriched in root microbiomes across soils and host species and uncovered previously unex-
plored bacteria-virus connections in crop root ecosystems. Together, the CRBC and CRVC serve as valuable
resources for investigating microbial mechanisms and applications, supporting sustainable agriculture.

INTRODUCTION

Plant roots act as a hub for recruiting a diverse array of microor-

ganisms from the surrounding soil.1 Thesemicroorganisms colo-

nize both the surface and interior of roots and, along with their

microbial genomes, are collectively known as the root micro-

biome, which plays a critical role in influencing the growth and

health of host plants, especially agronomic crops.2–7 Recently,

functional investigations and community profiling of root bacte-

ria have emerged as a cutting-edge area in crop root microbiome

research,7–10 highlighting the urgent need for a comprehensive

collection of bacterial genomes specific to crop root ecosys-

tems. Such genome collections, particularly those derived from

cultivated isolates, are invaluable resources for exploring the

functional and biological potential of crop root microbiomes.

The absence of a comprehensive bacterial genome collection

presents a significant challenge for in-depth research on the

crop root microbiome. Marker gene-based amplicon sequenc-

ing technology captures the taxonomic diversity of microbio-

mes11–14 but does not address their functional diversity. Bacte-

rial genomes encode massive functional diversity, which can

vary even between strains of the same species.15–17 While

shotgun metagenomic techniques can identify functional gene

diversity within root microbes and allow for more precise taxo-

nomic classification, they rely on comprehensive, high-quality

reference genomes to be effective.18,19
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Strain and genome collections of root bacteria are limited for

agronomically relevant crops. Pioneering studies in model

plants, such as Arabidopsis thaliana and Lotus japonicus, have

generated nearly 800 bacterial genomes.20–22 However, these

resources from model plants are poorly suitable for crop

research, as bacterial colonization exhibits host specificity.22,23

Bacteria derived from one plant species can trigger strong im-

mune responses in other plants, reducing their colonization.22

To fully understand these microbial functions, genomic data

derived from crop root microbiomes are crucial.6,15,24,25 Howev-

er, existing genomic resources related to the crop root micro-

biome primarily rely on small-scale datasets derived from diver-

gent methodologies, and dominated with traditional agricultural

species like Rhizobium and Bacillus.4,26,15,24,27–29 In addition,

limited access to isolates and inadequately organized metadata

have hindered the full potential of these resources for the

broader scientific community. Given the growing commercial in-

terest in developing probiotics for agricultural applications—

such as biocontrol agents, biofertilizers, and biostimulant

inocula—the absence of a systematic collection of crop root

bacteria represents a missed opportunity for advancing crop mi-

crobiome research.

Cultivation methods capture only a limited range of root

bacterial taxa.5,20 Metagenome-assembled genomes (MAGs)

provide an alternative and complementary approach to accu-

rately acquire genome information from uncultured root mi-

crobes.30,31 However, obtaining MAGs for the root microbiomes

of crops andmodel plants presents significant challenges. These

include the high proportion of host plant genome sequences in

root metagenomic data and the vast differences in microbial

abundances within the root microbiome, both of which signifi-

cantly increase sequencing costs, often 10–20 times higher

than for environmental samples. These factors make it less

feasible to acquire MAGs for microbes colonizing root surfaces

and interiors.6,25 As a result, comprehensive bacterial genome

collections for crop root microbiome research remain scarce,

and functional information for both cultivable and uncultivable

bacteria is limited. This gap hinders mechanistic studies and

genome-level analyses of the crop root microbiome.

In addition to research on root bacterial microbiomes, the

study of root viromes has attracted considerable interest, given

that viruses arewidespread and play significant roles inmicrobial

communities.32,33 Numerous viral genomes have been discov-

ered in the human gut, soils, and marine environments, often ex-

hibiting distinct ecological specificities.34–37 Across ecosys-

tems, viruses, especially phages that infect bacteria, show

intrinsic interaction with bacteria, profoundly influencing the

population and life activities of their hosts. However, the distribu-

tion and prevalence of these viruses within plant root micro-

biomes, particularly in crops, remain unclear. Phages shape

the genomes of bacteria and have led to the evolution of many

antiviral systems.38,39 Some phages possess the ability to regu-

late host behaviors, which not only benefits phage survival but

also assists the host in, e.g., resisting infection by other

phages.40 Due to the limited genomic and metagenomic data

available for crop root microbiomes, a dedicated viral genome

collection for crop roots has yet to be developed. Establishing

a systematic and comprehensive genome collection of crop

root viruses is indispensable for advancing research in crop

root microbiome studies.

In this work, we combined high-throughput bacterial cultiva-

tion with shotgun metagenomic sequencing to establish the

crop root bacterial genome collection (CRBC) and the crop

root viral genome collection (CRVC), comprehensive databases

of bacterial and viral genomes from roots of multiple crop spe-

cies. Using these resources, we evaluated the phylogenetic di-

versity and genome novelty of CRBC and CRVC, explored

conserved characteristics of crop root microbiomes, and

examined the interactions between bacteria and viruses within

the crop root microbiome. The resources will advance research

on crop root microbiomes, enable strain-level mechanistic

research, and provide a foundation for developing microbial ap-

plications to support sustainable agricultural practices, and are

accessible on our website (www.cropmicrobiome.com).

RESULTS

The CRBC comprises 6,699 genomes of root bacteria
To infer the genome sequences and functional repertoire of the

bacterial root microbiome, we established a systematic and

comprehensive collection of bacterial genomes from crop

roots. This collection includes genomes of both cultivated bac-

terial strains and uncultured bacteria obtained through metage-

nomic assembly (Table S1A). The CRBC is derived from the

roots of wheat, rice, maize, and Medicago grown in agricultural

soils. Our sampling strategy enriched for root-associated mi-

crobiota, capturing microbes residing on the rhizoplane and

within the endosphere (STAR Methods). To retrieve the cultur-

able fraction of the crop root bacterial microbiome, we condu-

cted extensive isolation of bacterial strains for whole-genome

sequencing. To complement this and cover the unculturable

fraction, we included MAGs by performing deep, culture-inde-

pendent metagenomic sequencing on crop root samples

(Figure 1).

The CRBC dataset comprises 6,699 high-quality bacterial ge-

nomes. We obtained 4,618 bacterial genomes (5.5 Tbp in raw

reads) from pure root bacterial cultures. Following high-

throughput bacterial isolation and selection of representative

bacterial strains (STARMethods), we identified 1,496 root bacte-

rial genomes fromwheat, 1,287 from rice, 1,056 frommaize, and

779 from Medicago (Table S1A). Additionally, 2,081 MAGs of

root bacteria were assembled from 332 root metagenomic sam-

ples across 14 datasets, spanning various soils and crop species

(Tables S1A–S1D). These MAGs, representing a range of ge-

nomes of uncultured CRBC bacteria, complement the cultured

bacterial genomes, adding 21 phyla and 147 genera not found

in cultured isolates (Table S1E). Notably, the taxonomic diversity

within the 6,699 genomes (68.9% from isolates) is extensive,

spanning 27 phyla, 49 classes, and 113 orders. This diversity in-

cludes numerous genomes within prominent root bacterial

phyla, such as Proteobacteria (3,659 genomes), Actinobacter-

iota (1,720 genomes), Bacteroidota (395 genomes), and Firmi-

cutes (433 genomes). An impressive 79.1% of these genomes

are of high quality, with an average completeness of 98.9%

and an average contamination of 0.9%, aligning with standards

in the Genome Taxonomy Database (GTDB),41 the most
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comprehensive database of over 300,000 prokaryotic genomes

from diverse ecosystems (Figures S1A–S1C; Table S1A; STAR

Methods). With its high-quality and expansive genomic repre-

sentation, the resources of the CRBC will serve as a valuable

foundation for both microbiological and genomic studies on

the crop root microbiome.

The CRBC enhances crop root bacterial genome
diversity and metagenomic read coverage
Touncover novel bacterial specieswithin theCRBC,wesystemat-

ically surveyedcrop rootbacterial genomesacrossdifferent public

databases, including NCBI,42 the Integrated Microbial Genomes

and Microbiomes (IMG/M),43 European Nucleotide Archive

(ENA),44 andGTDB.41We found that fewer than1%of thebacterial

genomeswere derived fromcrop roots (Table S1F), with 3,073 ge-

nomes having a quality score (QS) > 50, representing only 6 phyla

and 33 orders (Figures S1D and S1E; Table S1G; STARMethods).

We compared the CRBC genomes with publicly available crop

root genomes and found that the CRBC substantially increased

the number and diversity of crop root bacterial species. Using

an average nucleotide identity (ANI) threshold of 95%, the com-

bined set of genomes (6,699 + 3,073) clustered into a total of

Figure 1. Design and overview of the CRBC and CRVC
Based on comprehensive root-derived bacterial isolates and root metagenomic data, we established the crop root bacterial genome collection (CRBC) and the

crop root viral genome collection (CRVC) fromwheat, rice, maize, andMedicago. The CRBC encompasses 6,699 root bacterial genomes. The database includes

4,618 genomes (5.5 Tbp of raw reads) from bacterial isolates from crop roots. Each crop comprises over 700 isolates. The database also includes 2,081 MAGs

(10.3 Tbp of raw reads) obtained from 332 root metagenomic samples. Each crop species is represented by at least two genotypes and spans three or four soil

backgrounds. We also reconstructed 9,736 viral genomes by using bacterial genomes and root metagenomic contigs and defined them as the CRVC.

See also Figure S1.
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3,044 distinct species (Figure 2A). Remarkably, the CRBC

contributed significantly to this diversity, encompassing 2,318

species, 2.8 times the species richness of publicly available

crop root bacterial genomes. The CRBC included 2,212 bacterial

species not previously reported in crop roots (Figure S1F).

Compared with genomes in GTDB, CRBC genomes contained

1,817 undefined bacterial species, including 1,329 isolates and

488 MAGs, which exhibited an average ANI of less than 95%

with GTDB genomes (Figures 2A and S1G). Of these species,

the following ranks could not be assigned, phylum (1), class

(1), order (5), family (22), and 177 species with an unknown genus

compared with the GTDB (Table S2A). Similar trends were ob-

tained by using the relative evolutionary divergence (RED) value

to infer the taxonomic ranks (Table S2A). On average, each

CRBC genome contains 14.9% uncharacterized genes, and

these undefined bacterial species substantially expand the tree

of life, spanning 26 phyla, 47 classes, and 182 families (Tables

S1A and S2A).

The CRBC expands the phylogenetic diversity (PD) of crop

root bacteria, increasing that of publicly available crop root bac-

teria by 290.6% (Figure 2B; Table S2B; STAR Methods). Ge-

nomes derived from CRBC isolates notably expanded the phy-

logeny of bacterial phyla commonly found in the root

microbiome, such as Alphaproteobacteria, Actinobacteriota,

Gammaproteobacteria, Bacteroidota, and Firmicutes. Specif-

ically, four essential root bacterial families—Burkholderiaceae,

Sphingomonadaceae, Microbacteriaceae, and Nocardioida-

ceae—each containing over 100 species, offer valuable re-

sources for targeted genomic investigations (Table S2C). In

contrast, the CRBCMAGs predominantly expanded the diversity

of phyla associated with uncultured bacteria in crop roots, such

as Myxococcota, Patescibacteria, and Fibrobacterota. Intrigu-

ingly, a combined analysis of bacterial genomes and crop root

metagenomic data revealed that bacteria corresponding to the

MAGs were estimated to have lower growth rates than cultured

bacterial isolates (Figure S1H; Table S2D; STAR Methods),

underscoring the importance of MAGs in capturing less abun-

dant bacterial species.

Then, we assessed the read coverage in root metagenomic

data by comparing the CRBC with other public databases,

including NCBI RefSeq,42 GTDB,41 Genomes from Earth’s Micro-

biomes catalog (GEM),45 UnifiedHumanGastrointestinal Genome

collection (UHGG),46 Ocean Microbiomics Database (OMD),31

and public genomes from crop root bacteria. Using 42 metage-

nome samples from crop roots and 37 samples from the crop

rhizosphere, which were not used in the CRBC construction

(Table S2E; STAR Methods), we aligned the reads from these

metagenomes to each reference database to determine read

coverage. The CRBC achieved significantly higher coverage of

metagenomic data (mean coverage: 50.2%) compared with the

other reference databases (Figure 2C). Notably, root metage-

nomes had higher coverage with CRBC than rhizosphere data

(Figure S1I). Reference genomes from human and ocean ecosys-

tems covered only a small fraction (below 4%) of root metage-

nomic sequences (Table S2E). Although GEM included rhizo-

sphere microbial genomes and aimed to cover diverse soil

ecosystems, its mean coverage was only 10.6%, highlighting

the distinct microbial compositions between rhizosphere soils

and root-associated microbiomes. Finally, the most comprehen-

sive collections of reference genomes, NCBI andGTDB, achieved

mean coverages of 18.2% and 31.1%, respectively, both consid-

erably lower than the CRBC. Taken together, these findings indi-

cate the importance of niche-specific genome reference data-

bases and highlight the CRBC’s substantial improvement in

supporting crop root metagenome analyses.

CRBCgenomes harbor diverse functions andmetabolite
genes for crop growth benefits
Taking advantage of the genomic resource, we systematically

examined all high-quality, non-redundant genomes in the

CRBC and published crop root bacteria for the coexistence

pattern of their capacity to encode genes associated with plant

growth-promoting (PGP) functions. We observed a widespread

distribution of genomic traits related to nutrient utilization,47–51

the biosynthesis of plant growth hormones,52–56 and resistance

to biotic and abiotic stresses57–59 among crop root bacteria

Figure 2. The CRBC dramatically expands the PD of publicly available crop root bacterial genomes

(A) The CRBC contains 1,817 undefined bacterial species. The maximum-likelihood phylogenetic tree contains 3,044 representative species of the CRBC and

crop root bacteria in public databases (NCBI, IMG/M, and ENA; STAR Methods). The clades associated with phylogenetic branches of 2,212 CRBC unique

bacterial species, which show ANI below 95% when compared with published genomes derived from crop roots, are designated as undefined in crops and

highlighted in blue (n = 1,702, contributed by CRBC isolates) or green (n = 510, contributed by CRBCMAGs). Published bacterial species from crop roots (n = 832)

are indicated in beige. The initial inner circle illustrates the taxonomy of representative species at the phylum level. Proteobacteria are displayed at the class level

due to excessive species numbers. Black bars represent log10-transformed numbers of non-redundant genomes (ANI of <99.9%) within each representative

bacterial species. The outermost circle indicates 1,817 undefined bacterial species (green, n = 1,817) in the CRBC when compared with bacterial genomes from

GTDB with the threshold of 95% ANI.

(B) The CRBC dramatically extends the PD of crop root bacterial genomes in public databases. The bar plot illustrates the proportional contribution of the CRBC

and published crop root bacteria to the PD of crop root bacterial genomes, with the top 20 most abundant phyla displayed. Bars are colored by the contributions

of genomes, with CRBC isolates undefined in crops (blue), CRBCMAGs undefined in crops (green), and published species from crop roots in beige. The numbers

of representative species in each phylum are specified in brackets following the phylum names. The inset Venn diagram illustrates the percentage of total PD of all

genomes in (A). See also Table S2B. Note that the CRBC expands the PD of crop root bacterial genomes in public databases by 290.6% (30.8%+ 5.5%+ 38.1%)/

(6.3% + 9.3% + 1.5% + 8.5%).

(C) The CRBC shows a higher coverage of crop root metagenomic reads than public genome resources. The boxplot shows proportions of metagenomic reads of

42 root samples unrelated with the CRBC construction (wheat, n = 12; rice, n = 12; maize, n = 6;Medicago, n = 12) aligned to genomes in public databases and the

CRBC. The abbreviations are: NCBI, NCBI RefSeq database; GTDB, Genome Taxonomy Database; GEM, the Genome from Earth’s Microbiomes catalog;

UHGG, the Unified Human gastrointestinal Genome collection; OMD, the Ocean Microbiomics Database (adjusted p < 0.05, Kruskal-Wallis rank-sum test and

Dunn’s test). See also Table S2E.

See also Figure S1.
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(Figure 3A; Tables S3A–S3C). Among the 6,109 high-quality bac-

teria genomes, 5,231 encoded at least one of the tested PGP

functions, implying a significant role for root bacteria in supporting

crop growth (Figure S2A; Table S3C). More than 43.8% of these

genomes encode at least two categories of PGP functions, and

18.7% encode all three categories, with dominant representation

from the Rhizobiaceae, Xanthobacteraceae, Pseudomona-

daceae, and Burkholderiaceae (Figure 3B). Further analysis

identified over 1,000 bacterial genomes with both nitrogen-fixa-

tion and phosphorus solubilization capabilities, especially in

A

B C

Figure 3. The CRBC harbors diverse beneficial functions and numerous metabolite gene clusters

(A) Distribution of PGP functions and BGCs. The phylogenetic tree is constructed using the high-quality representative genomes of each bacterial genus in the

CRBC and public databases (STAR Methods). Phylum level taxonomy is colored (I). Genera containing CRBC genomes are labeled in blue (II). For each genus,

plant growth-promoting (PGP) functions are illustrated as the percentage of genomes containing all the necessary genes for each function (III; STAR Methods).

Bacterial PGP functions are categorized into three groups: nutrient utilization, growth promotion, and stress tolerance, according to the KEGG database and prior

literatures. Nutrient utilization includes phosphorus nutrition (P), nitrogen fixation (N), and siderophore biosynthesis (Fe). Growth promotion includes biosynthesis

of indole-3-acetic acid (IAA), gibberellin (GA), and cytokinin (CK). Stress tolerance includes the biosynthesis of 1-aminocyclopropane-1-carboxylic acid

deaminase (ACCd), salicylic acid (SA), and ethylene. The BGC compositions are presented as the average of genomes at the genus level (IV). BGC classes are

shown with the following abbreviations: non-ribosomal peptide synthetases (NRPSs); polyketide synthase (PKS); ribosomally synthesized and post-transla-

tionally modified peptide (RiPP). The outermost bar chart (section V) shows the median number of BGCs in all genomes of each genus. See also Table S3C.

(B) Coexistence patterns of PGP functions within individual bacterial genomes. The intersection scheme with vertical lines illustrates co-existent functions within

individual genomes. The number and taxonomy of genomes for each coexistence pattern are shown in the stacked bar plot in the above panel. The number of

genomes for each PGP group is shown in the lower left.

(C) The CRBC encodes a large number of undefined BGCs. All 48,643 BGCs identified in genomes of the CRBC, and public databases are clustered into 12,865

GCFs. Comparison with computationally predicted (BiG-FAM, left) and experimentally validated (MIBiG, right) BGCs revealed 5,199 undefined GCFs with an

average cosine distance greater than 0.2, 81.1% of which are uniquely contributed by CRBC genomes. The upper panels are colored according to the taxonomy

of genomes encoding BGCs, whereas the bottom panels are colored according to BGC classes.

See also Figure S2.
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Figure 4. Conserved genetic features of the root bacterial microbiomes across multiple crop species grown in diverse soils

(A) Taxonomic composition of root bacterial metagenomes shows dramatic variation among 14 metagenomic datasets. The taxonomy of bacterial genes in 332

root metagenomic samples was classified by Kraken2 with the GTDB database implemented with crop root bacterial genomes (STAR Methods). Bacteria are

displayed at the phylum level. The top 11 most abundant phyla are displayed, while phyla of lower abundance are shown as others. Proteobacteria are displayed

at the class level due to excessive abundance.

(B) Convergent functions of root bacterial metagenomes among 14 metagenomic datasets. Bacterial genes are annotated according to the KEGG database and

are summarized at the KEGG pathway level 2 (superpathway). The top 17 most abundant superpathways are displayed, while the functions of lower abundance

annotated by the KEGG are shown as others.

(C) Consistent enrichment patterns of genetic functions in the root bacterial metagenomes compared with soils across multiple crops grown in diverse soils. The

Venn diagrams show the overlap of KEGG bacterial functions that are enriched in root microbiomes. Functions enriched in the roots of all four crop species are

highlighted in green (root, n = 332; soil, n = 75, adjusted p < 0.05, Wilcoxon rank-sum test). See also Table S4I.

(D and E) Abundance and KO distribution of functions consistently enriched in the root microbiomes. Boxplots (D) show the cumulative abundance of top 11

abundant bacterial functions that are consistently enriched in roots of wheat, rice, maize, andMedicago comparedwith corresponding soils. The distribution (E) of

KOs in each function are colored according to their frequency of enrichment (green) or depletion (brown) in the roots of crop species. The colors from light to dark

(legend continued on next page)
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Rhizobiaceae and Burkholderiaceae (Figure S2B). Bacillaceae

were notable for their dual capabilities in phosphorus solubiliza-

tion and siderophores biosynthesis. Notably, 18 genomes encode

functions related to phosphorus, nitrogen, and siderophore utiliza-

tion, with 8 genomes from the Klebsiella genus (Table S3C). In

contrast, functions related to plant growth hormone biosynthesis

or resistance to biotic and abiotic stresses rarely co-occurred in a

single bacterium (Figures S2C and S2D). This bacterial resource

offers a valuable opportunity to investigate the genomic coexis-

tence of these functions and to identify promising candidates for

future agricultural applications.

We next identified biosynthetic gene clusters (BGCs) within

crop root bacteria, which are related with crop growth and

health.60–62 In total, we identified 48,643 BGCs across the

CRBC and publicly available crop root bacterial genomes (Figure

3A; Table S3D). The predominant categories of BGCs were ribo-

somally synthesized and post-translationally modified peptides

(RiPPs), non-ribosomal peptide synthetase (NRPS), and terpenes,

representing 26.1%, 15.4%, and 14.3% of the clusters, respec-

tively (Figure S2E). These bacteria exhibited diverse biosynthetic

capabilities (Figures S2F–S2H), averaging 8 BGCs per genome.

Next, we clustered the identified BGCs into 12,865 gene cluster

families (GCFs) (Table S3E; STAR Methods). Strikingly, 5,199

(40.4%) of the identified GCFs did not show close similarity to

any computationally predicted BGCs from the biosynthetic gene

cluster families (BiG-FAM) database,63 while 12,317 (95.7%) of

GCFs showed no close similarity to experimentally validated

BGCs from the Minimum Information about a Biosynthetic Gene

cluster (MIBiG) database64 (Figure 3C; STARMethods). These un-

definedGCFsweremainly contributed by Proteobacteria and Ac-

tinobacteriota, encoded functions related to RiPPs, NRPS, poly-

ketide synthase (PKS), and terpenes. The most significant

differences in our GCFs compared with known databases were

in biosynthetic families related toRiPPs, predominantly originating

from the genera Dyadobacter, Paenibacillus, and Arthrobacter

(Tables S3D and S3E). These BGCs present an untapped reser-

voir of secondary metabolites with presumably specialized func-

tions in crop root bacteria, potentially offering new avenues for

agricultural applications.

Conserved genetic characteristics of root microbiomes
across multiple crop species grown in diverse soils
The scarcity of bacterial genomes and the interference of host

DNA hinder our understanding of root ecosystems. To investi-

gate the genomic patterns of root microbes, we systematically

explored conserved features within 332 deeply sequenced root

metagenomes (median depth of 30.4 Gbp) from 14 datasets

across diverse crop species and soil backgrounds, including

wheat, rice, maize, and Medicago. Each crop included at least

two genotypes and three to four soils to ensure diverse sample

representation. On average, 82.0% of the sequencing reads

were host derived (Table S1D). After removing host reads, we

annotated microbial genes using our genome resources and

publicly available microbial reference genomes. Rarefaction

analysis showed that the non-redundant microbial gene reser-

voirs for each crop had reached saturation (Figure S3A;

Table S3F). The number of non-redundant genes reproducibly

detected in the root microbiomes was 13.2–55.4 times of those

observed in their respective hosts (Figure S3B; Table S3G;

STAR Methods). On average, 23.8% of root microbial genes

could not be annotated by Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Table S3H), underscoring the extensive ge-

netic potential of the root microbiome. Notably, we found a

high abundance of bacteria in root microbiomes, comprising

an average of 95.7% of the overall microbial relative abun-

dance (Figure S3C; Table S3I). In contrast, fungi, archaea, vi-

ruses, and protists represented much smaller fractions of the

root microbiome, averaging 0.74%, 0.15%, 3.21%, and

0.16%, respectively. These findings highlight the dominance

of bacteria in root microbiomes and underpin the importance

of developing systematic genome reference collections for

crop root bacteria.

We next identified the conserved features of bacteria within the

crop root microbiome using our root metagenomic datasets

across multiple host plant species grown in diverse soil back-

grounds (Tables S4A–S4F). For each root dataset, we collected

4–6 soil samples from unplanted soils alongside root sampling.

Notably, although the taxonomic compositions of root micro-

biomes were strongly influenced by soil backgrounds and host

species, the compositions of superpathway (2nd level of KEGG

pathway) functions in root microbiomes were similar across all

14 datasets (Figures 4A, 4B, and S3D), suggesting the presence

of conserved genetic features in multiple crop root ecosystems.

Further, we compared the microbiomes of roots and surrounding

soils in each dataset and found that, within each crop species, a

higher proportion of microbial taxa was influenced by soil back-

grounds compared with the proportion of microbial functions

affected by soils (Figures S3E–S3H; Tables S4G–S4J). A total of

11microbial functions were conservatively enriched in rootmicro-

biomes of all four crops grown in various soils (Figure 4C;

Table S4I). These functions are related to ATP-binding cassette

(ABC) transporters, two-component systems, biofilm formation,

bacterial chemotaxis, and flagellar assembly (Figure 4D). Their

enrichment patterns were confirmed by analysis at the KEGG

functional orthologs (KOs) level (Figure 4E; Table S4J). Notably,

compared with KOs depleted in roots, most root-enriched KOs

were associated with functions related to cell motility, membrane

transport, and signal transduction (Figures 4F and 4G), genes

belonging towhich have been previously identified in randombar-

coded transposon mutant sequencing in the laboratory in single

correspond to the number of crop species enriched or depleted, ranging from 0 to 4. The horizontal bars within the boxes represent median values. The tops and

bottoms of the boxes represent the 75th and 25th percentiles, respectively. The upper and lower whiskers extend to data no more than 1.53 the interquartile

range from the upper edge and lower edge of the box, respectively (root, n = 332; soil, n = 75, adjusted p < 0.05, Wilcoxon rank-sum test). See also Table S4J.

(F andG) Functional proportion of KOs enriched or depleted in roots of four host species. Doughnut charts indicate KOs consistently enriched (F) or depleted (G) in

the roots of wheat, rice, maize, and Medicago compared with corresponding soils. KOs are presented at the superpathway level (root, n = 332; soil, n = 75,

adjusted p < 0.05, Wilcoxon rank-sum test).

See also Figures S3 and S4.
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plant species,65,66 or genomic exploration of root microbes.21,67

Our metagenomic findings underscore the significance and wide-

spread presence of these functions in the root ecosystem across

diverse soil backgrounds and crop species.

Genome references are essential for linking functional genes

to specific taxa. Therefore, we searched for the crop root bacte-

rial taxa that predominantly harbor the identified root-enriched

functional KOs (Table S4K). Overall, phylogenetically related

genera exhibited similar functional patterns (Figure S4A). Proteo-

bacteria were particularly enriched in root-specific functions,

aligning with their dominance in the crop root microbiome. Ge-

nomes from genera such as Rhizobacter, Variovorax, Acido-

vorax, and Rubrivivax encoded over 130 root-enriched KOs

(Table S4L), and Gammaproteobacteria were enriched in func-

tions related to cellular community (Figure S4B). In addition,

KOs related to cell motility, including bacterial chemotaxis and

flagellar assembly, were abundant in Proteobacteria, Firmicutes,

and several Actinobacteriota, such as Microbacteriaceae and

Nocardioidaceae. However, these functions were less prevalent

in Bacteroidota and most other Actinobacteriota (Table S4L).

This analysis identified key determinants of root-associated bac-

teria and highlights essential taxon-to-function links, offering po-

tential targets to enhance bacterial competence within crop root

ecosystems.

The CRVC reveals unreported viral genus-level clusters
and enhanced viral genetic diversity in crop root
ecosystems
Viruses intrinsically interact with other microbes and play pivotal

roles in natural ecosystems.68 However, a systematic collection

of viral genomes is currently lacking in crop root microbiome

research. Based on CRBC and crop bacterial genomes in pub-

lished databases, along with 29.5 million contigs derived from

root metagenomes in this study, we systematically retrieved vi-

ruses within crop root ecosystems. Using a hybrid analysis

involving geNomad,69 VirSorter,70 and DeepVirFinder,71 we

identified 9,736 non-redundant viral genomes with complete-

ness of over 50%, collectively referred to as the CRVC (Fig-

ure S5A; Table S5A; STARMethods). Most (95.3%) of these viral

genomes are identified as bacteriophages, with 71.0% exhibit-

ing lysogenic behavior (Figure S5B; Table S5A), reflecting our

pipeline’s focus on discovering viral genomes from bacterial ge-

nomes and metagenomes. Nearly half of the genomes within the

CRVC are of high quality, with 723 complete viral genomes iden-

tified based on direct terminal repeats (DTRs) or inverted termi-

nal repeats (ITRs), and most of the CRVC genomes belonged

to Caudoviricetes (Figures S5C and S5D; Table S5A). The virus

sizes vary extensively, ranging from 1,501 to 477,160 bp, with

a median length of 40,590 bp (Figure S5C). Notably, 65.5% of

the viral genomes in the CRVC were derived from the CRBC

and our root metagenomes (Figure S5D).

To identify novel viral taxa within the CRVC, we clustered all

CRVC viral genomes with those from public databases (NCBI

RefSeq,42 Metagenomic Gut Virus catalog [MGV],35 Global

Ocean Viromes 2.0 [GOV 2.0],37 and viruses from Integrated Mi-

crobial Genomes/Virus [IMG/VR]36 root and soil ecosystems) us-

ing the Minimum Information about an Uncultivated Virus

Genome (MIUViG) proposed standard thresholds of 95% ANI

over 85% alignment fraction.72 We identified 7,653 species-level

clusters (viral operational taxonomic units [vOTUs]) in the CRVC,

of which 92.8% are not reported in existing databases (Fig-

ure S5E; Table S5B). Between 12.3% and 36.1% of CRVC pro-

teins were successfully annotated using KEGG,51 Pfam,73 and

VOGDB74 databases, while 57.6% of proteins exhibiting un-

known functions (Figures S5F and S5G; Table S5C), underscor-

ing CRVC’s vast genetic potential. To assign higher taxonomic

ranks, we grouped genomes into genus-level categories based

on whole-genome gene-sharing profiles (STAR Methods).

Notably, 1,572 (50.8%) of the 3,097 viral genus-level clusters in

the CRVC did not cluster with viral genomes from other pub-

lished databases (Figure 5B; Table S5D; STAR Methods). To

minimize technical biases from bacterial isolation when com-

paring databases, we compared metagenome-derived viruses

in the CRVC with those in public databases. We found that the

CRVC shared more viral clusters with IMG/VR root and soil

environments than with human and ocean environments (Fig-

ure S5H), suggesting an ecosystem-specific nature of viral

distribution.

Using genomes from the CRVC, we investigated viral genetic

diversity within crop root metagenomes. High intra-population

genetic diversity (microdiversity) enhances a viral population’s

ability to adapt to environmental changes, ensuring its evolu-

tionary potential.75–77 Microdiversity was assessed by aligning

metagenomic sequencing reads to a representative genome

and calculating the coverage diversity of each nucleotide posi-

tion. Quantitative analysis revealed 2,690 viral species-level

clusters in crop root metagenomes (Table S5E). These viruses

were categorized into four groups based on distribution pat-

terns: rare, single-crop regional, single-crop multizonal, and

multi-crops multizonal (STAR Methods). Most viruses (82.4%)

were consistently detected, with 31.8%–58.5% appearing

across multiple locations but within a single crop species (Fig-

ure S5I). Notably, 123 viruses were found across different loca-

tions and crop species, accounting for an average of 13.8% of

the total viral abundance (Table S5E). Microdiversity analysis

showed higher genetic diversity in viruses with broader distribu-

tion, especially those infecting diverse crop species and span-

ning geographic locations (Figure 5C), suggesting that ecolog-

ical niche differentiation drives viral selective variation. Lytic

viruses were more abundant in root environments than

temperate viruses, but temperate viruses exhibited greater mi-

crodiversity (Figure S5J; Tables S5E and S5F), suggesting the in-

teractions with bacteria may shape their evolutionary pathways.

Phage-bacteria interactions in crop root ecosystems
Utilizing genome and metagenome resources, we first investi-

gated the abundance of viruses in crop root ecosystems. Meta-

genomic data from roots and their corresponding soils were

annotated using the CRVC and IMG/VR databases (STAR

Methods).We observed a significantly higher relative abundance

of phages in root microbiomes than in the corresponding

soils (Figure 6A; Table S5E; relative abundance, meanroot =

0.00645%, meansoil = 0.00002%). This pattern was consistent

across 14 datasets representing diverse soil sources and crop

species. Similar results were obtained when using only the

IMG/VR database as reference (Figure S6A). This analysis
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B C

Figure 5. The CRVC unveils 1,572 unreported viral genus-level clusters and unique patterns in crop root microbiomes

(A) The CRVC reveals a striking diversity of unreported viral genus-level clusters and connections with crop root bacterial genomes. The hierarchical clustering

dendrogram was built based on the clustered viral protein families in the CRVC using the Jaccard distance with the average clustering model (STAR Methods).

The first circle (I) indicates the taxonomy of host bacteria for each viral cluster at the genus level, showing that 2,199 (71.0%) of CRVC clusters exhibit connections

with crop root bacteria. Connections were determined according to viral contigs and CRISPR spacers detected in bacterial genomes. The second inner circle

represents the proportion of temperate phages within each viral genus (II). Black bars show the log10-transformed genome numbers in each viral genus, ranging

from 1 to 144 (III). In the outermost circle (IV), the gene-sharing network analysis reveals 1,572 unreported viral genus-level clusters in the CRVC compared with

publicly available databases (STAR Methods).

(B) Half of the CRVC genus-level clusters are not reported in public databases. The Venn diagram illustrates overlaps of the CRVC genus-level clusters with the

public viral databases including RefSeq, MGV, GOV2, and IMG/VR root and soil (STAR Methods).

(C) Viruses identified in root metagenomes across various crop species and geographical locations exhibit a higher microdiversity. Boxplots illustrate the mi-

crodiversity of viruses detected in roots of multiple crops and locations are higher compared with those detected in a single crop or location (adjusted p < 0.05,

Kruskal-Wallis rank-sum test and Dunn’s test; STAR Methods). Using prevalence characteristics, phages are categorized into four prevalence groups: stable

presence across roots of multiple crops in multiple locations (multi-cropsmultizonal, green), within roots of a single crop species in multiple locations (single-crop

multizonal, purple), within roots of a single crop species in a single location (single-crop regional, orange), and viruses with prevalence lower than 10% of samples

(rare, yellow). Wheat, n = 47; rice, n = 212; maize, n = 45; Medicago, n = 28.

See also Figure S5.
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Figure 6. Phage-bacteria connections within crop root ecosystems

(A) Phage abundances in the rootmicrobiomes are higher than those in corresponding soils. The box plot shows the relative abundances of phages in root and soil

metagenomic samples from wheat, rice, maize, and Medicago (root, n = 332; soil, n = 75. ****adjusted p < 0.0001, Wilcoxon rank-sum test).

(B) The bacterial antiviral systems are enriched in the root microbiomes of multiple crops grown in diverse soil backgrounds. The heatmap illustrates the

normalized log10-transformed fold changes in enrichment (green) and depletion (brown) of abundance concerning bacterial antiviral systems within the root

microbiomes of wheat, rice, maize, andMedicago compared with their corresponding soils. Bacterial antiviral systems are categorized into three groups based

on mechanisms: DNA synthesis inhibition, degrading nucleic acids, and abortive infection. Metagenomic datasets were clustered using the ward.D2 model.

(legend continued on next page)
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highlights the adaptability of viruses colonizing the surfaces and

interiors of roots.

Consistently, we observed that 94.0% of root bacterial ge-

nomes possessed at least one bacterial antiviral defense system,

with a median of five defense families per genome (Figure S6B;

Table S6A). In crop root microbiomes, most of the bacterial anti-

viral systems were more enriched compared with those in soils.

Specifically, systems that inhibit DNA synthesis and degrade nu-

cleic acids were consistently enriched in the roots across 14

datasets. For example, the R-M systems and CRISPR-Cas sys-

tems, two widespread and typical immune systems, exhibited

convergent enrichment patterns in root microbiomes across

crop species and soil sources (Figures 6B and S6C; Table

S6B), suggesting the adaptability of root bacteria to phage-rich

environments. In summary, the enrichment of both phages and

bacterial antiviral defense systems within crop root microbiomes

highlights the presence of complex and largely unexplored inter-

actions between phages and root bacteria.

Next, we systematically investigated phage-bacteria interac-

tions across root microbiomes frommultiple crops and soil sour-

ces. We found that a total of 5,885 (60.2%) of the 9,772 crop root

bacterial genomes had connections with phages, with phylum-

specific proportions ranging from 50.9% to 83.5% (Figure S6D).

These connections were identified through CRISPR spacer

matches or the presence of phages (Table S6C), with most

phages showing specific connections with distinct bacterial spe-

cies (Figure S6E). Additionally, 27.0% of abundant and prevalent

root bacteria exhibited connections with phages, as confirmed

by both genomic matches and metagenomic co-occurrence

(Figure 6C; Table S6D). These phage connections exhibited a

preference for specific bacterial families, including Burkholderia-

ceae, Rhizobiaceae, Xanthomonadaceae, and Pseudomonada-

ceae (Figure 6C; Tables S6E and S6F; STAR Methods). Interest-

ingly, phage-bacteria pairs confirmed by genomic matches

exhibited significantly stronger associations within root ecosys-

tems than those identified solely by co-occurrence analysis (Fig-

ure S6F; Table S6G), indicating that pairs confirmed by genomic

matches are more reliable. Together, these findings underscore

the pivotal role of the CRBC and CRVC resources in unraveling

the intricate network of connections within the crop root

microbiome.

DISCUSSION

Bacteria colonizing the surface and, more intimately, the interior

of roots have significant impacts on crop growth and health.1,2

Obtaining the genomic content of these bacteria and the corre-

sponding isolates is essential for deciphering the mechanisms

behind their interactions with host plants and for developing ap-

plications that benefit crop ecosystems. In this study, we estab-

lished a systematic CRBC, comprising 6,699 genomes (68.9%

from cultivated isolates) from three major grain crops wheat,

rice, and maize, and the important forage legumeMedicago, us-

ing two complementary methods: high-throughput bacterial

cultivation and metagenome-derived MAGs (Figure 1). The

CRBC contains 1,817 undefined bacterial species compared

with all current public databases (Figure 2A), not only addressing

the shortage of publicly available crop root bacterial genomes

but also massively extending the diversity of bacterial genomes

from all ecosystems.31,46,45 Interestingly, 43.8% of crop root

bacterial genomes encode at least two distinct PGP functional

categories including nutrient utilization, biosynthesis of plant

growth hormones, and stress resistance (Figure 3B)—functions

that have garnered significant attention in recent years.78,79

These genomic resources and extensive isolates provide unique

opportunities to explore the roles and molecular mechanisms by

which the root microbiome influences crop growth and

health.80–82

Root metagenomics, specifically in the rhizoplane and endo-

sphere, presents unique challenges compared with sequencing

rhizosphere soil and gut microbiomes due to the high proportion

of host DNA in root samples, which significantly raises the costs

of capturing microbial taxa. These constraints have resulted in a

shortage of crop root microbiome data, with limited samples in

small-scale studies,83 thus limiting our understanding of root

metagenome patterns. In this study, we performed deep

sequencing of 332 root metagenomic samples from 14 datasets

and found that on average, 82.0% are host reads. Notably, bac-

teria dominate root microbiomes, constituting an average of

95.7% of the total microbial abundance, while fungi, archaea, vi-

ruses, and protists represented much smaller fractions (Fig-

ure S3C; Table S3I). This pattern is consistent with the bacterial

dominance in the gut microbiome,84,85 highlighting the impor-

tance of bacteria in the interactions between hosts and their

associated microbiomes.

The CRBC represents a significant step forward in accurately

quantifying and characterizing bacterial functional patterns

within and across crop root ecosystems. Marker-gene-based

profiling has already demonstrated that the taxonomic composi-

tion of the root microbiome is shaped by environmental factors

and host plants,2,6,11,12,14 such as the increase of Actinobacter-

iota in low-water soil environments.9,80 Our comparison between

metagenomes of roots and soils confirmed this taxonomic vari-

ation (Figure 4A). However, we were surprised to observe that

root metagenome functions were conserved across 14 datasets,

regardless of soil sources, host species, and genotypes

(C) The genome-level analysis reveals the broad connections of bacteria and phages in crop root ecosystems. The maximum-likelihood phylogenetic tree

contains 330 bacterial species that are in the top ten relative abundances in the root microbiome of each metagenomic sample (n = 332; STAR Methods). The

bacterial families showing intensive connections with phages are colored in the phylogenetic branches (I). The phylum information of each bacterial species is

color-coded (II). Undefined crop root bacterial species are in solid points while published crop bacterial species are in hollow points. Log10-transformed mean

relative abundance of each bacterial species in the root microbiomes of each crop is shown in the heatmap, with each crop species color-coded (III). The

prevalence of each bacterial species in crop root microbiomes are shown in the bar plot and categorized and color-coded into four groups (IV). The out layers

(V) illustrate the genome-level connections of phages with each bacterial species in crop root microbiomes. The size of points reflects the log10-transformed

number of phage species interacting with each bacterial species. Temperate phages and lytic phages are color-coded in green and red, respectively. See also

Table S6E.

See also Figure S6.
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(Figure 4B). Genes associatedwith specific conserved functions,

such as cell motility, secretion systems, and signaling transduc-

tion, have previously been identified in random barcoded trans-

poson mutant sequencing in the laboratory in single plant spe-

cies,65,66 or genomic exploration of root microbes.21,67 Our

metagenomic results from diverse soil backgrounds, host plant

species, and genotypes provide an ecological support for the

significance and prevalence of these functions in crop root eco-

systems. Given that similar conserved patterns are observed in

the human gut microbiome across individuals with different

backgrounds,86,87 we hypothesize that microbiome-host inter-

actions share conserved molecular principles. Our work pro-

vides valuable insights into potential targets for microbiome

manipulation in agricultural applications.

Viruses have intrinsic connections with bacteria and are

increasingly recognized for their roles in agriculture. However,

their genomes and ecological patterns remain understudied in

the crop rootmicrobiome comparedwith other ecosystems.88–91

Bacteria-phage connections represent an underexplored aspect

in the crop root ecosystem, primarily due to a lack of genomic re-

sources that limit systematic analysis. Our metagenomic sam-

ples from diverse crops and soil backgrounds revealed that

nearly 30% of the prevalent root bacterial species across multi-

ple crop species grown in various soils contained phage ge-

nomes or CRISPR spacer matches with phage genomes (Fig-

ure 6C). These connections showed a preference for specific

bacterial families, including the abundant Rhizobiaceae, Xantho-

monadaceae, and Pseudomonadaceae, which are known to

play roles in crop growth and health.92–95 Interestingly, viruses

found across multiple hosts or locations exhibited significantly

greater genetic diversity (Figure 5C). A similar pattern was

observed in ocean viral data,37 supporting the interpretation

that the genetic diversity may contribute to viral speciation and

adaptability in diverse environments.

Our genomes are valuable resources for exploring novel

mechanisms and functional potentials within the crop root mi-

crobiome. For example, we have identified a type II-C

CRISPR-Cas system promoting factor based on a Chryseobac-

terium genome in the CRBC.96 The PcrIIC1 protein within the

CbCas9 (Chryseobacterium sp. Cas9, CbCas9) gene cluster me-

diates the dimerization of CbCas9, allowing it to tolerate mis-

matches in the spacer and protospacer adjacent motif (PAM) se-

quences, thereby improving bacterial immunity against

phages.96 This finding is in linewith our observation that bacterial

antiviral systems and viruses are both enriched in root micro-

biomes compared with soils (Figures 6A and 6B). In addition,

by leveraging complete genome sequences, we examined the

presence and coexistence of microbial functions at the genome

level, insights that fragmented metagenomic sequencing cannot

provide, thereby expanding our knowledge of potential benefi-

cial bacteria. We also identified a significant number of unde-

fined BGCs from diverse phylogenetic origins (Figure 3C), high-

lighting the genetic potential of the CRBC. Based on our

bacterial and viral resources, we are establishing an international

crop microbiome repository, which other scientists can continu-

ously expand and benefit. This repository will serve as a valuable

resource of genomes and isolates for the global crop root micro-

biome research community.

Together, the CRBC and CRVC genomic resources will

serve an important role similar to that of well-known and

widely used human and environmental microbiome genome re-

sources,31,46,88 advancing crop root microbiome research into

mechanistic, genome-level understanding. The availability of a

large number of isolates with accompanying genomic informa-

tion will particularly stimulate functional and mechanistic studies

of the crop root microbiome, ultimately benefiting applied agri-

cultural sciences.

Limitations of the study
While the CRBC and CRVC provide comprehensive coverage of

the dominant bacteria and viruses in the crop root microbiome,

additional microbial genomes are needed particularly for the

low abundant members of crop root ecosystems. The undefined

species in this study are based solely on genome comparison;

therefore, further investigation is still needed on their phenotypic

and chemotaxonomic characteristics as well as ecological roles.

These species also represent some rare cases of previously pub-

lished isolates that lack genomes or associated metadata. Many

bacterial and viral species-level clusters currently contain only

one or two genomes, limiting the ability to identify their pange-

nomes and intraspecies diversity. Expandingmicrobial genomes

to include crops grown in more diverse soil types and from

various continents will also be crucial. Increased global cooper-

ation to store and share root microbial genomes and isolates,

with the standardized procedure, will be important and required

in the future to advance root microbiome research to the genome

and strain level.
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127. Navarro-Muñoz, J.C., Selem-Mojica, N., Mullowney, M.W., Kautsar,

S.A., Tryon, J.H., Parkinson, E.I., De Los Santos, E.L.C., Yeong, M.,

Cruz-Morales, P., Abubucker, S., et al. (2020). A computational frame-

work to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16,

60–68. https://doi.org/10.1038/s41589-019-0400-9.

128. Kautsar, S.A., van der Hooft, J.J.J., de Ridder, D., and Medema, M.H.

(2021). BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million

biosynthetic gene clusters. GigaScience 10, giaa154. https://doi.org/10.

1093/gigascience/giaa154.

129. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment

with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/

nmeth.1923.

130. Olm, M.R., Crits-Christoph, A., Bouma-Gregson, K., Firek, B.A., Moro-

witz, M.J., and Banfield, J.F. (2021). inStrain profiles population microdi-

versity from metagenomic data and sensitively detects shared microbial

strains. Nat. Biotechnol. 39, 727–736. https://doi.org/10.1038/s41587-

020-00797-0.

131. Gao, Y., and Li, H. (2018). Quantifying and comparing bacterial growth

dynamics in multiple metagenomic samples. Nat. Methods 15, 1041–

1044. https://doi.org/10.1038/s41592-018-0182-0.

132. Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Ti-

vey, A.R.N., Lopez, R., and Butcher, S. (2024). The EMBL-EBI job bis-

patcher sequence analysis tools framework in 2024. Nucleic Acids

Res. 52, W521–W525. https://doi.org/10.1093/nar/gkae241.

ll
OPEN ACCESS

18 Cell 188, 1–19, May 1, 2025

Please cite this article in press as: Dai et al., Crop root bacterial and viral genomes reveal unexplored species and microbiome patterns, Cell
(2025), https://doi.org/10.1016/j.cell.2025.02.013

Resource

https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1099/jgv.0.001840
https://doi.org/10.1099/jgv.0.001840
https://doi.org/10.3390/v8030066
https://doi.org/10.3390/v8030066
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1038/s41467-022-30269-9
https://doi.org/10.1038/s41467-022-30269-9
https://doi.org/10.1038/s41596-020-00444-7
https://doi.org/10.1038/s41596-020-00444-7
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1002/cpbi.102
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1038/s41596-022-00738-y
https://doi.org/10.1038/s41596-022-00738-y
https://doi.org/10.1371/journal.pone.0163962
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.7717/peerj.7359
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/nar/gkab688
https://doi.org/10.1093/nar/gkab688
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/nar/gkab335
https://doi.org/10.1038/s41589-019-0400-9
https://doi.org/10.1093/gigascience/giaa154
https://doi.org/10.1093/gigascience/giaa154
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/s41587-020-00797-0
https://doi.org/10.1038/s41587-020-00797-0
https://doi.org/10.1038/s41592-018-0182-0
https://doi.org/10.1093/nar/gkae241


133. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,

Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Pro-

cessing Subgroup (2009). The sequence alignment/map format and

SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioin-

formatics/btp352.

134. Putri, G.H., Anders, S., Pyl, P.T., Pimanda, J.E., and Zanini, F. (2022). An-

alysing high-throughput sequencing data in python with HTSeq 2.0. Bio-

informatics 38, 2943–2945. https://doi.org/10.1093/bioinformatics/

btac166.

135. Nayfach, S., Camargo, A.P., Schulz, F., Eloe-Fadrosh, E., Roux, S., and

Kyrpides, N.C. (2021). CheckV assesses the quality and completeness of

metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585.

https://doi.org/10.1038/s41587-020-00774-7.

136. Kieft, K., Zhou, Z., and Anantharaman, K. (2020). VIBRANT: automated

recovery, annotation and curation of microbial viruses, and evaluation

of viral community function from genomic sequences. Microbiome 8,

90. https://doi.org/10.1186/s40168-020-00867-0.
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Wheat rhizosphere metagenomic samples Quiza et al.98 NCBI: PRJNA643787

Genome Taxonomy Database (GTDB) GTDB team41 https://gtdb.ecogenomic.org/

GEM database Nayfach et al.45 https://portal.nersc.gov/GEM

UHGG database Almeida et al.46 http://ftp.ebi.ac.uk/pub/databases/

metagenomics/mgnify_genomes/

OMG database Paoli et al.31 https://microbiomics.io/ocean/

RDP database Cole et al.99 https://mothur.org/wiki/rdp_reference_

files/

BiG-FAM database Kautsar et al.63 https://bigfam.bioinformatics.nl

MIBiG database Terlouw et al.64 https://mibig.secondarymetabolites.org

KEGG database Kanehisa et al.100 https://www.genome.jp/kegg/
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MGV database Nayfach et al.35 https://portal.nersc.gov/MGV/

GOV 2.0 database Gregory et al.37 https://datacommons.cyverse.org/browse/

iplant/home/shared/iVirus/GOV2.0

ICTV database Siddell et al.101 https://ictv.global/

Virus-Host Dtabase Mihara et al.102 https://www.genome.jp/virushostdb/

Pfam database Mistry et al.103 http://pfam.xfam.org/

VOGDB database Trgovec-Greif et al.74 http://vogdb.org

DefenseFinder Structures DB Tesson et al.104 https://defensefinder.mdmlab.fr/wiki/

structure

Oligonucleotides

27F (AGAGTTTGATCCTGGCTCAG) Zhang et al.105 16S primers for Sanger sequencing

1492R (TACGGCTACCTTGTTACGACTT) Zhang et al.105 16S primers for Sanger sequencing

799F (AACMGGATTAGATACCCKG) Zhang et al.105 First step primers for high throughput

identification

1193R (ACGTCATCCCCACCTTCC) Zhang et al.105 First step primers for high throughput

identification

Software and algorithms

USEARCH Edgar et al.106 http://www.drive5.com/usearch/

Trimmomatic v0.39 Bolger et al.107 https://github.com/usadellab/Trimmomatic

SPAdes v3.14.0 Prjibelski et al.108 https://github.com/ablab/spades

CheckM v1.1.8 Parks et al.109 https://github.com/Ecogenomics/CheckM

MetaWRAP v1.3.2 Uritskiy et al.110 https://github.com/bxlab/metaWRAP

KneadData v0.7.6 The huttenhower lab https://github.com/biobakery/kneaddata

Kraken2 v2.1.1 Wood et al.111 https://github.com/DerrickWood/kraken2

Kraken tool extract_kraken_reads.py Lu et al.112 https://github.com/jenniferlu717/

KrakenTools/blob/master/extract_kraken_

reads.py

SeqKit Shen et al.113 https://bioinf.shenwei.me/seqkit/

MEGAHIT v1.2.9 Li et al.114 https://github.com/voutcn/megahit

Prodigal v2.6.3 Hyatt et al.115 https://github.com/hyattpd/Prodigal

CD-HIT v.4.8.1 Fu et al.116 https://sites.google.com/view/cd-hit

MetaBAT2 Kang et al.117 https://bitbucket.org/berkeleylab/metabat

MaxBin2 Wu et al.118 http://sourceforge.net/projects/maxbin/

tRNAscan-SE v 2.0.12 Chan et al.119 http://trna.ucsc.edu/tRNAscan-SE/

barrnap v0.9 Torsten Seemann https://github.com/tseemann/barrnap

dRep v3.2.2 Olm et al.120 https://github.com/MrOlm/drep

Mash v2.3 Ondov et al.121 https://github.com/marbl/mash

MUMmer v4.0.0 Marcais et al.122 https://github.com/mummer4/mummer

GTDB-Tk v2.0.0 Chaumeil et al.123 https://github.com/Ecogenomics/GTDBTk

Salmon v1.9.0 Patro et al.124 https://combine-lab.github.io/salmon/

DIAMOND v2.0.15.153 Buchfink et al.125 https://github.com/bbuchfink/diamond

antiSMASH v6.1.0 Blin et al.126 https://antismash.secondarymetabolites.

org/#!/start

BiG-SCAPE v1.1.5 Navarro-Muñoz et al.127 https://github.com/medema-group/BiG-

SCAPE

DefenseFinder v1.2.2 Tesson et al.104 https://defensefinder.mdmlab.fr/

BiG-SLICE v1 Kautsar et al.128 https://github.com/medema-group/

bigslice

Bowtie 2 v2.4.5 Langmead and Salzberg129 https://bowtie-bio.sourceforge.net/

bowtie2/index.shtml
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Plant materials and growth conditions
Healthy wild-type cultivars of wheat (Triticum aestivum L.), rice (Oryza sativa L.), maize (Zea mays L.), andMedicago (Medicago trun-

catula) were used for bacterial isolation and cultivation. Wheat cultivars, including BenDiHuangHuaMai, China Spring, Jing 411, RHT,

and Xiaoyan 54, were cultivated at Changping Farm in Beijing, China. Rice cultivars, including Nipponbare and IR24, were grown on

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

InStrain v1.8.0 Olm et al.130 https://github.com/MrOlm/inStrain/

DEMIC Gao and Li131 https://sourceforge.net/projects/demic/

EMBOSS Transeq v6.6.0.0 Madeira et al.132 https://www.ebi.ac.uk/jdispatcher/st/

emboss_transeq

SAMtools v1.9 Li et al.133 https://www.htslib.org/

HTseq v2.0.2 Putri et al.134 https://htseq.readthedocs.io/en/latest/

geNomad v1.5.2 Camargo et al.69 https://portal.nersc.gov/genomad

VirSorter v1.0.6 Roux et al.70 https://github.com/simroux/VirSorter

DeepVirFinder v1.0 Ren et al.71 https://github.com/jessieren/

DeepVirFinder

CheckV v1.0.1 Nayfach et al.135 https://bitbucket.org/berkeleylab/checkv/

src/master/

Prodigal v2.11.0-gv Camargo et al.69 https://portal.nersc.gov/genomad

VIBRANT v1.2.1 Kieft et al.136 https://github.com/AnantharamanLab/

VIBRANT

MMSeqs2 v13.45111 Steinegger and Söding137 https://github.com/soedinglab/MMseqs2

mcl v14-137 Enright et al.138 https://micans.org/mcl/

CRISPRCasFinder v2.0.3 Couvin et al.139 https://github.com/dcouvin/

CRISPRCasFinder

BLAST Camacho et al.140 https://blast.ncbi.nlm.nih.gov/Blast.cgi

CoverM v0.6.1 Aroney et al. https://github.com/wwood/CoverM

hmmsearch v3.3.2 Finn et al.141 https://www.ebi.ac.uk/Tools/hmmer/

search/hmmsearch

tidyverse (R package) Wickham et al.142 https://www.tidyverse.org/

patchwork (R package) Thomas Lin Pedersen143 https://github.com/thomasp85/patchwork

ComplexHeatmap (R package) Gu et al.144 https://github.com/jokergoo/

ComplexHeatmap

viridis (R package) Garnier et al.145 https://cran.r-project.org/web/packages/

viridis/

vegan (R package) Oksanen et al.146 https://github.com/vegandevs/vegan

rstatix (R package) Alboukadel Kassambara147 https://rpkgs.datanovia.com/rstatix/

ggtree (R package) Xu et al.148 https://www.bioconductor.org/packages/

ggtree

ggtreeExtra (R package) Xu et al.149 https://bioconductor.org/packages/

release/bioc/html/ggtreeExtra.html

phytools (R package) Liam J. Revell150 https://cran.r-project.org/web/packages/

phytools/index.html

multcompView (R package) Graves et al.151 https://github.com/lselzer/multcompview

ggVennDiagram (R package) Gao et al.152 https://github.com/gaospecial/

ggVennDiagram/

PMCMRplus (R package) Thorsten Pohlert153 https://cran.r-project.org/web/packages/

PMCMRplus/index.html

RColorBrewer (R package) Erich Neuwirth154 https://cran.r-project.org/web/packages/

RColorBrewer/index.html
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the same farm as wheat but in a separate field. Maize cultivars, including Ji 53 and Zong 3, were cultivated in Dongying, Shandong,

China. Medicago cultivars, including Jemalong A17 and R108, were grown in the greenhouse using agricultural soil collected from

Changping Farm in Beijing, China (Tables S1A–S1C).

For field experiments, wheat cultivars, including Fangnong 16, Jimai 78, Jimai 22, Xiaoyan 54, and Zhoumai 18, were cultivated in

fields at Changping, Beijing, and Yangling, Shanxi. Rice cultivars, including Nipponbare, IR24, andmaterials from the USDA ricemini-

core collection,155 were grown in fields at Hainan, Hefei and Beijing in China. Maize cultivars, including inbred lines Chang 7-2, Jing

724, Zheng 58, Zi 330, 5237, as well as hybrid varieties Jingke 968, HG968, Jingnongke 728, Ximeng 1919, Ximeng 3358, and Ximeng

6, were cultivated in fields at Shangzhuang, Beijing and Quzhou, Hebei.Medicago cultivars, including Jemalong A17 and R108, were

grown in the greenhouse with agricultural soil collected from Shangzhuang, Changping Farm, Beijing, and Sipin, Jilin (Table S1D).

For both bacterial isolation and field sampling, fresh roots were collected from healthy crops harvested at the vegetative stage of

growth, see following details.

METHOD DETAILS

Bacterial isolation, cultivation and genomic DNA extraction
Bacteria were isolated from the roots of wheat, rice, maize, andMedicago (Table S1A). Fresh roots were collected from healthy crops

grown in agricultural soils. Three independent plants for each crop genotype were harvested at the vegetative stage. Roots were

immersed in 30 mL of sterile 13 PBS to remove loosely adhering soil particles and vortexed at 180 rpm for 15 min; this process

was repeated three times. The roots were cut into 2 mm sections and mixed to maximize bacterial species diversity. Visible nodules

and nodule initials inMedicago roots were removed. A total of 0.02 g of mixed tissues was immersed in 200 mL of 10 mMMgCl2 and

ground into a homogeneous mixture. The homogenate was diluted to different concentrations using 10% TSB and R2A liquid media.

The diluted homogenate was distributed into 96-well, sterile cell culture plates and cultivated for 16–20 days at room temperature.

Cultivated bacterial DNAwas extracted to amplify the V5-V7 regions of the 16S rRNA genes via two-sided barcoded PCR.5,105 The

DNA extraction from bacterial cultures was carried out through a lysis procedure: 6 mL of bacterial culture was mixed with 10 mL of

Buffer I, which is composed of 25 mM NaOH and 0.2 mM EDTA at a pH of 12, and the mixture was then incubated at 95�C for 30 mi-

nutes, then the pH was neutralized by adding 10 mL of Buffer II (containing 40 mM Tris-HCl at pH 7.5). To identify and track bacterial

isolates in 96-well plates, a two-step PCR approach was employed, utilizing degenerate primers 799F and 1193R that were custom-

ized with unique barcodes for each well and plate to amplify the V5-V7 variable regions of the bacterial 16S rRNA genes. In the first

PCR phase, 3 mL of the lysed bacterial DNA was amplified in a 30 mL reaction mixture that included 0.75 U of HS-Taq DNA polymer-

ase, 103 buffer, 0.2 mM dNTPs (supplied by Takara), and 0.1 mM each of the forward (799F) and reverse (1193R) primers (obtained

from Life Technologies). The PCR conditions for this stage consisted of an initial denaturation at 94�C for 2 minutes, followed by 25

cycles of 94�C for 30 seconds, 55�C for 30 seconds, and 72�C for 1minute, with a final extension step at 72�C for 5minutes. The PCR

products from each well were then diluted 40-fold to prepare for the second PCR stage. In the second PCR stage, 3 mL of the diluted

first-stage PCR product was amplified in a 30 mL reaction mixture that contained 0.75 U of HS-Taq DNA Polymerase, 103 buffer,

0.2 mM dNTPs, 0.1 mM of one of the 96 barcoded forward primers,105 and 0.1 mM of the reverse barcoded primer. The PCR cycling

conditions for this stage were: an initial denaturation at 94�C for 2 minutes, followed by 25 cycles of 94�C for 30 seconds, 55�C for 30

seconds, and 72�C for 1minute, and a final extension at 72�C for 5minutes. After amplification, the PCR products were purified using

the Agencourt AMPure XP Kit from Beckman Coulter GmbH and theWizard� SVGel and PCRClean-Up System from Promega. The

DNA concentrations were measured using the PicoGreen dsDNA Assay Kit from Life Technologies, and the samples were pooled in

equal volumes.

Purified PCRproducts were subjected to Illumina sequencing. After bacterial identification based on 16S rRNAmarker genes using

USEARCH,99,106 bacteria were selected from target wells in the 96-well cell culture plates and further purified on 1/2 TSB or R2A agar

plates. After three continuous purifications, single colonies were transferred to a liquid medium and cultured for 3–5 days. Liquid cul-

tures were then validated by Sanger sequencing with 27F and 1492R primers. To select taxonomically diverse isolates, we chose

bacterial strains with a threshold of % 97% 16S rRNA gene identity within each crop species for whole-genome sequencing. At

the same time and to capture intraspecies genetic diversity, we also included replicated bacteria that shared R 97% 16S rRNA

gene identity but were isolated from independent crop roots or different soils. Key criteria for replicated strains were that they

must represent independent host colonization events. For bacterial genomic DNA extraction, 500 mL of bacterial solution was added

to a LysingMatrix E tube and homogenized twice at 7,200 rpm for 30 s with a Precellys Evolution homogenizer (Bertin Technologies).

DNA was extracted using a FastDNA Spin kit (MP Biomedicals), according to the manufacturer’s instructions. DNA concentrations

were measured using a PicoGreen dsDNA Assay kit (Life Technologies). In total, 1 mg of DNA from each bacterial strain was used for

whole-genome sequencing.

Whole-genome sequencing and de novo assembly of bacterial isolates
For each bacterial strain, genomic DNA was sequenced on an Illumina NovaSeq 6000 platform using 150-base pair (bp) paired-end

reads, with 1 Gbp of raw data sequenced per genome to ensure �203 sequencing depth. In total, 5.5 Tbp of raw reads were

collected. Clean reads with adapters removed were filtered by quality analysis using Trimmomatic v0.39107 with options ‘SLIDING-

WINDOW:4:20’ and ‘MINLEN:100’ and assembled using SPAdes v3.14.0108 with options ‘–isolate, –careful, –cov-cutoff auto’ to form
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contigs, and only contigs longer than 1,000 bp were retained for subsequent analysis. After assembly, genome purities were eval-

uated by using the lineage_wf workflow in CheckM v1.1.8.109 Multi-isolates with contamination of > 5% were split into separate ge-

nomes using the binning module of MetaWRAP v1.3.2.110 In total, we obtained 4,620 bacterial genomes with less than 5% contam-

ination from pure isolates (wheat, 1,497; rice, 1,287; maize, 1,057;Medicago, 779). Themajority (99.1%) of these genomes are of high

quality, surpassing the 90.0% completeness threshold, and having contamination levels lower than 5.0% (Table S1A; STAR

Methods).

Harvesting and metagenomic sequencing of root microbiome samples
In total, 332 root samples were in situ collected from wheat, rice, maize, and Medicago grown in 9 field soils. To ensure the repre-

sentativeness and diversity of the crop root microbiome, at least two plant genotypes of each crop species were grown in three

to four different soil backgrounds and were categorized into 14 datasets (Table S1D). All plants were harvested at the vegetative

stage. For wheat, rice, and maize plants, individual root tissue was dug out from the field and gently shaken to remove loosely

adhering soil. Root microbiome samples were then washed and collected as described previously.5 Medicago plants were grown

in a greenhouse in agricultural soils from geographically different locations. Visible nodules and nodule initials in Medicago roots

were removed. Roots were then washed and collected the same way as described before. As a control, for each dataset, four to

six bulk soil samples were collected from corresponding fields or pots without plants. In total, 75 bulk soil samples were collected.

Both root and bulk soil samples were frozen in liquid nitrogen and stored at –80 �C. Root and soil samples were smashed for DNA

extraction using a FastDNA SPIN kit (MP Biomedicals). DNA was fragmented by sonication following Illumina’s instructions to

generate PCR-free libraries for shotgun sequencing.

Quality control, assemble and gene prediction of metagenomic samples
In total, 10.3 Tbp of raw reads were generated across 407 root and soil metagenomic samples. After removing adapter, barcode se-

quences, and low-quality reads, host crop reads were depleted using the KneadData v0.7.6 profile (https://github.com/biobakery/

kneaddata) with the options ‘SLIDINGWINDOW:4:20, MINLEN:50, and –very-sensitive’. To further remove host crop reads, reads

were taxonomically classified by Kraken2 v2.1.1112 with the default database, and reads classified as host crop species were filtered

using the Kraken tool extract_kraken_reads.py.111 For root samples, the percentage of cleanmicrobial reads varied across datasets,

with an average of 17.9% (Table S1D). To achieve relatively balanced coverage of microbial diversity, cleaned reads were normalized

to nomore than 6 Gbp or 8 Gbp for root and soil samples using SeqKit tool,113 respectively. For each dataset, clean reads from roots

or soil were de novo co-assembled into contigs using MEGAHIT v1.2.9114 under meta large mode with a minimum contig length

threshold of 500 bp. Prokaryotic coding sequences were predicted from the assembled contigs using Prodigal v2.6.3115 with the op-

tion ‘-p meta’. To remove redundant gene sequences, predicted sequences were clustered into non-redundant (NR) genes at 95%

identity and 90% coverage of the shorter gene using CD-HIT v.4.8.1116 with options ‘-c 0.95, -as 0.9, -G 0, -g 1, -d 0, and -l 150’.

Considering their limited genetic information, NR genes shorter than 150 bp were removed. The resulting NR genes for both root

and soil subsets were then further merged by clustering to generate an integrated NR gene reference for later use as the reference

for metagenomic read quantification.

Binning and refinement of MAGs
MAGs were reconstructed from microbial contigs of 332 root metagenomic samples using MetaWRAP v1.3.2.110 De novo metage-

nomic assembly was also performed on individual samples according to the previously mentioned methods to identify unique mi-

crobes. Assembled contigs with lengths of over 1,000 bpwere binned into individual draft genomes based on sequence composition

and coverage information using MetaBAT2117 and MaxBin2118 as implemented in the binning module of MetaWRAP with default pa-

rameters. To improve the quality of the assembled genomes, the bin_refinement module was used on the assembled and binned

genomes with a contamination cut-off below 10% and a completeness cut-off over 50%.156

Collecting genomes of crop root bacteria from public databases
To uncover novel bacterial species within the CRBC, we systematically collected crop root bacterial genomes across different public

databases, including NCBI,157 IMG/M,43 and ENA44 databases. A total of 5,441 plant root-related bacterial genomes were obtained

from public databases using metadata from April 2023. For details, in NCBI, we scanned the NCBI Datasets genome table (https://

www.ncbi.nlm.nih.gov/genome/browse#!/overview/) and BioProject and BioSample information from NCBI plant-associated envi-

ronmental packages. Keywords such as root, rhizosphere, rhizoplane, endophyte, endosphere, and nodule were used to filter the

root-associated genomes. As a result, we obtained 3,168 root-related bacterial genomes from NCBI. For the IMG/M system

(https://img.jgi.doe.gov/), 2,273 root-related bacterial genomes were downloaded based on the criterion of ecosystem type

belonging to ‘‘Root’’, which also includes genomes from rhizosphere and nodules. Additionally, 294 bacterial genomes from lotus

roots under accession number PRJEB37696 were downloaded from the ENA database. We then screened the crop hosts of these

root-related bacterial genomes by both their English names and scientific names, e.g. rice (Oryza sativa), sorghum (Sorghum bicolor),

maize (Zea mays), and barley (Hordeum vulgare), according to the World Crops Database (https://world-crops.com). In total 3,073

quality-checked crop root-related bacterial genomes were obtained from public databases (Table S1G).
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Quality control, dereplication, and species clustering of bacterial genomes
The quality of all 10,973 crop root bacterial genomes was assessed by CheckM v1.1.8109 using the lineage_wf workflow with default

parameters. In total, 9,772 genomes passed the quality criterion of a score exceeding 50 (QS = completeness – 53 contamination)158

and were retained for further analysis. These genomes consisted of 4,618 isolates and 2,081 MAGs from the CRBC and 3,073 bac-

terial genomes from public databases (Tables S1A and S1G). Prediction of tRNA and rRNA in bacterial genomes was conducted us-

ing tRNAscan-SE v 2.0.12119 and barrnap v0.9 (https://github.com/tseemann/barrnap) with default parameters, respectively. High-

quality bacterial genomes met the following specific criteria: completeness > 90%, contamination < 5%, and the presence of 23S,

16S, and 5S rRNA genes along with at least 18 tRNAs.156 Yet, the challenge of assembling rRNA genes from short-read sequencing

data has led to difficulty in obtaining the 5S rRNA gene. For subsequent functional analysis, we defined genomes with complete-

ness > 90% and contamination < 5% as high quality.

We dereplicated the 9,772 genomes using an ANIR 99.9% and coverageR 30% using dRep v3.2.2.120 The options used for der-

eplication were ‘-strW 0, -centW 0, -nc 0.3, and -sa 0.999’. Subsequently, clustering at the species level was performed with an ANI

of R 95% and coverage of R 30%. For species-level clustering, ANI was set to -sa 0.95. To designate representatives for NR ge-

nomes and species, the genomewith the highest quality was selected, prioritizing cultured genomes over MAGs. The scoring criteria

were based on the following formula: completeness – 5 3 contamination + 0.5 3 log (N50). In total, 2,212 species lacking published

crop root genomes were identified as undefined bacterial species from crop roots within the CRBC (Table S2A).

Comparison of bacterial species within the CRBC and representative species in the GTDB database
To explore the novelty of CRBC genomes compared with bacterial genomes across different habitats, we compared all the genomes

within the CRBC to 62,291 reference prokaryotic species in GTDB Release 207 (8 April 2022).41 We first converted the GTDB refer-

ence species and CRBC into sketch files by Mash v2.3121 with default parameters. We then used mash dist to estimate the pairwise

Mash distances between CRBC genomes andGTDB representative species. For each CRBC genome, we aligned the genome to the

best-matched reference GTDB genome with the lowest Mash distance using DNAdiff v1.3 from MUMmer v4.0.0122 to calculate

the genome coverage (AlignedBases) and ANI (AvgIdentity). We considered a CRBC genome to match the reference GTDB if the

coverage wasR 30% and ANI wasR 95%. CRBC species lacking a match to the GTDB were defined as undefined species across

various habitats (Table S2A).

To infer the higher taxonomic ranks of the undefinedCRBC genomes, we employed a strategy based on relative evolutionary diver-

gence (RED) to delineate taxa above the species level, as recommended by GTDB-tk.123 First, we used the de_novo_wf workflow to

construct a de novo phylogenetic tree for the CRBC and GTDB reference genomes. The tree was then annotated, and the taxonomic

ranks were inferred using GTDB-tk. Potential unknown taxa were labeled according to the rank inference results. The analysis re-

vealed that these species encompass the following potential unique taxa: 1 phylum, 1 class, 3 orders, 15 families, and 101 genera

(Table S2A).

Taxonomic classification and phylogenetic analysis of root bacterial genomes
Taxonomic classification of all bacteria was conducted using GTDB-Tk v2.0.0,123 the classify_wf workflow, and the unsplit bacterial

tree with the option ‘–full_tree’. The GTDB-Tk infer method was used to construct a maximum-likelihood phylogenetic tree de novo

using representatives of root bacterial species or genera. For tree construction, we used a concatenated multiple sequence align-

ment of 120 bacterial phylogenetically informative bacterial markers, analyzed under the WAG model for amino-acid substitution.

Phylogenetic diversity of the species tree was calculated by the sum of total branch lengths,159 and PD of each phylum was calcu-

lated by the sum of branch lengths of the representative genomes belonging to the phylum (Table S2B). The phylogenetic gain (PG) of

the CRBC compared with that of publicly available root genomes was calculated by the formula158 PGCRBC = PDtotal – PDPub. Phylo-

genetic analysis revealed the limited species diversity present in public genomes of crop root bacteria, contributing merely 25.6% to

the overall phylogenetic diversity (PD) of all crop root bacteria.

Reads coverage of root and rhizosphere metagenomic samples using different genome databases
Read coverage analysis of metagenomic data was conducted using Salmon v1.9.0124 with options ‘–libType A, –meta, and –valida-

teMappings’, andmapping rates were used to evaluate read utilization efficiency of diverse genome databases. We focused on root-

related metagenomic samples including 42 root metagenome samples not used for CRBC construction (wheat, n = 12; rice, n = 12;

maize, n = 6;Medicago, n = 12) and 37 rhizosphere metagenome samples sourced from previous studies98,160 (wheat, n = 29; maize

grown in Europe [PRJEB77048], n= 8, two independent sequencing from four rhizosphere samples; Table S2E). Tomaximize compa-

rability, host reads were removed and the metagenomic data were normalized to 1 Gbp per sample. Bacterial genome reference da-

tabases included NCBI RefSeq (September, 2022), GTDB Release 207,41 GEM,45 UHGG46 and OMD.31 Coverages of crop bacterial

genomes from the CRBC and published databases was evaluated individually and then integrated for analysis (Table S2E).

Functional annotation and BGC and antiviral system identification of bacterial genomes
Coding sequences for all crop root bacterial genomes were predicted using Prodigal v2.6.3115 with options ‘-p single, -f gff, and -a, -d’.

These predicted protein sequences were compared with prokaryotic orthologs of the KEGG database100 (v.102 release April 2021)

using the DIAMOND BLASTP v2.0.15.153125 with options ‘–outfmt 6, –max-target-seqs 1, –evalue 1e-5, –sensitive, –block-size 6,
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and –index-chunks 1’, and the identity threshold was set to 50% (Table S4L). Secondary metabolite BGCs were identified using anti-

SMASH126 v6.1.0 with the option ‘–cb-knownclusters’. Because fragmented BGCs are likely to introduce bias for genome comparison,

BGCs were subsequently screened to retain those predicted from contigs longer than 5 kb,31 resulting in a total of 48,643 BGCs, with

67% predicted to be complete by antiSMASH (Table S3D). These BGCs were divided into BGC classes according to BiG-SCAPE

v1.1.5.127 For individual genomes, BGC composition was calculated as the percentage of BGCs that belong to each class. The predic-

tion of bacterial antiviral defense systems within bacterial genomes was performed using DefenseFinder v1.2.2104 with default param-

eters (Table S6B). Defense system families in each genome were calculated by summing the number of unique subsystems.

PGP functions in bacterial genomes
To elucidate the PGP functions encoded within the CRBC and published crop root bacterial genomes, bacterial PGP biological pro-

cesses and genes/orthologs involved were compiled from previous studies. These included genes involved in nutrient utilization,

such as phosphorus nutrition,48–50 nitrogen fixation,47 siderophore biosynthesis,51 biosynthesis of plant growth hormones including

IAA52,53,56, GA,52,53,56 and CK,54,55 and resistance to biotic and abiotic stresses by biosynthesis of ACC deaminase,57 salicylic

acid,58,59 and ethylene51 (Tables S3A and S3B). For PGP functional annotation, we collected and curated PGP-related proteins within

the KEGG database, encompassing those encoded across eukaryotes, prokaryotes, and viruses. Additionally, proteins involved in

bacterial GA biosynthesis, such as experimentally-validated copalyl diphosphate synthase and kaurene synthase52,53 that were not

incorporated by KEGG, were manually downloaded and added into this PGP-related protein reference. To ensure robustness and

accuracy in profiling PGP features, we used high-quality, non-redundant genomes within crop root bacterial genomes (n = 6,109).

Based on BLAST results, as mentioned earlier, PGP genes encoded in each genome were summarized at the KO level as 0/1 binary

data. A PGP feature was considered present when all the orthologs involved in a specific PGP process were encoded within a

genome (Table S3C). The conservation of specific PGP functions at the genus level was assessed by determining the percentage

of NR genomes encoding that particular function.

Comparison of BGCs in crop root bacterial genomes and public databases
To quantify BGC novelty and richness across phylogenies, BGCs were further clustered into 12,865 GCFs by computing all-against-

all cosine distance using BiG-SLICE v1128 and a 0.2 distance threshold. We compared these BGCs with the public BGC databases,

including the computationally predicted BGCs in the BiG-FAM database63 and experimentally validated BGCs from the MIBiG v3.1

database.64 For each of these BGCs, the minimum cosine distance (dmin) to public BGCs was defined as its distance against the

public database. The average distance of a BGC within a GCF was considered its final cosine distance (dmin). A GCF was defined

as undefined when its dmin against the public database was greater than 0.2. To illustrate the extent of GCF in terms of BGC classes

and taxonomy, the dmin calculated between crop root GCFs and each of these public databases was displayed along the gradient

distance from 0 to 1.00 with an interval of 0.05 (Table S3E). GCFs containing BGCs that belong to several different BGC classes were

annotated as ‘‘Multiple classes’’. At the genus level, BGC composition and GCF richness were summarized as median values across

all high-quality NR genomes under a specific genus. When a genus included BGCs from genomes of the CRBC, the genus was an-

notated as CRBC present.

Taxonomic classification and functional annotation of crop root metagenomic samples
To optimize microbial gene identification for metagenomic analysis, NR genes were taxonomically classified with Kraken2

v2.1.1112 using the default database incorporated with the CRBC, published crop root bacteria, and publicly available reference

databases including GTDB,41 IMG/VR v4,36 FungiDB,97 and Ensemble protists in addition to the default Kraken built-in

database. Briefly, the reference genome fasta files were downloaded and formatted to fit with Kraken2 format requirements

and were integrated into Kraken2 default libraries (Tables S3F–S3I). For functional annotation, the NR gene set was first trans-

lated into protein sequences using EMBOSS Transeq v6.6.0.0132 and annotated by DIAMOND BLASTP against the KEGG pro-

tein databases.

Prediction and quality control of viral genomes
We predicted viral sequences from 9,772 bacterial genomes and assembled contigs of 332 crop root metagenomes. To achieve this,

we used geNomad v1.5.2,69 which uses a hybrid framework that integrates both alignment-free and gene-based models to identify

viral contigs. Additionally, to ensure comprehensive predictions, we used two different algorithms for viral sequence identification,

i.e., VirSorter v1.0.670 and DeepVirFinder v1.0,71 which rely on reference genome datasets and deep learning for viral sequence pre-

diction, respectively. For geNomad (v1.3), we used end-to-end execution with the conservative preset and the default database. For

VirSorter, Viromedb (–db 2) was used as a reference to predict prophage and viral fragments from genomes, and viral contigs clas-

sified as category 1, 2, 4, or 5 were retained. Contigs were scored by DeepVirFinder with default parameters, and those with a P

value < 0.05 were considered potential viral sequences. Predicted viral contigs were further filtered using a length threshold of 1

kb.35 Genome quality, gene classification and identification, and trimming of host regions were conducted with CheckV v1.0.1135 us-

ing the end-to-end workflow. Finally, 16,546 viral genomes with host gene content below 30% and genome quality classified as me-

dium or above (medium-quality, high-quality, and complete) were retained. To prevent redundant sequences predicted by the
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different algorithms, we deduplicated the viral sequences based on 100% sequence similarity and 100% coverage of short se-

quences. This process resulted in a final set of predicted 9,736 unique crop root viral genomes (Table S5A).

Gene prediction, functional annotation, and protein clustering of viral genomes
For a comprehensive comparison, we obtained viral genomes from public databases of representative ecosystems, including NCBI

RefSeq, the Metagenomic Gut Virus catalogue (MGV),35 Global Ocean Viromes 2.0 (GOV2.0),37 and IMG/VR v4.36 Within IMG/VR,

viruses originating from roots and soil were considered representative of plant root and soil environments. To ensure comparability,

only genomes with CheckV quality classified as medium or above were retained, with the exception of those from NCBI RefSeq with

confirmed completeness. Viral proteins from the NCBI virus were directly downloaded, whereas for other databases we used Prod-

igal v2.11.0-gv69 to predict coding sequences with default parameters, followed by translation into proteins. In total, 587,992 genes

were predicted from the CRVC (Table S5C). Viral life cycle prediction and functional annotation were conducted using VIBRANT

v1.2.1136 with option ‘-f prot -virome’ using reference databases including KEGG, Pfam,103 and VOGDB74 (http://vogdb.org/). Protein

clusteringwas conducted usingMMSeqs2 v13.45111137 with thresholds of 50%average amino acid identity (AAI) and 80%coverage

against UniRef50161,162 and options ‘–cov-mode 1, -c 0.8, –cluster-mode 2, –min-seq-id 0.5, and –kmer-per-seq 80’. Finally, the

CRVC dataset contained 200,069 protein clusters, of which only 33,323 were clustered with previously published viral sequences.

Clustering of viral genomes at the species and genus level
To assess the diversity and novelty of our viral genomes, all viruses were clustered at the species and genus levels (Tables S5B and

S5D). According toMIUViG standards72 a threshold of 95%ANI and coverage of 85%of the shorter sequencewere used for species-

level (vOTU) clustering. Similarity and coverage between genomes were estimated using scripts from the CheckV database.135

All-vs-all local comparisons between viral sequences were performed using the blastn package from BLAST v2.5.0140 with options

‘-max_target_seqs 30000 and -perc_identity 90’. The script cluster.py from the MGV database was used to perform species-level

clustering using a greedy, centroid-based algorithm. A total of 7,653 species-level clusters were identified in the CRVC.

At the genus level, clustering was performed based on protein similarity and the protein share network between genomes.163,164

Viruses from the CRVC and public databases were represented by representative genomes at the species level. Initially, all-vs-all

protein alignments were conducted using DIAMOND BLASTP v2.0.15.153125 with options ‘–evalue 1e-5, –max-target-seqs

10,000, –query-cover 50, and –subject-cover 50’. Subsequently, we calculated the number of shared proteins between genomes,

the proportion of proteins shared, and the average AAI of shared proteins between each genome pair. The score between genome

pairs was calculated based on mincov3 meanaai, and the score was used as the network edge between the genome pairs. Finally,

genome pairs were filtered based on the set threshold, and mcl v14-137138 was used to perform clustering with the option

‘–abc -I’. We benchmarked combinations of different filtering thresholds, including protein sharing ratios of 10%, 15%, 20%,

25%, and 30%, and note that when the viral genome was too large, at least 20 proteins needed to be shared between them. We

also tested average AAI values of 20%, 30%, 40%, 50%, 60%, and 70% as well as MCL inflation factors of 1.1, 1.2, 1.4, 2.0, 4.0,

and 6.0. We evaluated their combinations by comparing them against the taxonomy and clustering results derived from the

RefSeq viruses, which served as our mock dataset, using AdjustedMutual Information scores. Finally, we selected a protein network

sharing threshold at average AAI of 30% and an inflation factor of 4.0 for genus-level clustering, with precision and recall thresholds

set to 0.85 and 0.88, respectively. Viral species- or genus-level clusters that could not be clustered with other viruses were defined as

unreported.

Taxonomic classification of the CRVC
We performed taxonomic classification on the CRVC by integrating protein annotation and genus-level clustering results. First,

following the taxonomy of the ICTVMaster Species List MSL38 v1 (number 22),101 we curated corresponding RefSeq representative

virus sequences to serve as classification standards. For taxonomic classification, if the genome in the CRVC could be clustered at

the genus level with known reference viruses and the taxonomic consistency of reference viruses within the cluster exceeded 50%,

we assigned the taxonomic label to that cluster. For viruses that did not cluster with any reference viral genomes, we used

MMSeqs2137 based on the lowest common ancestor algorithm to classify the taxonomy of the genomes. The custom reference viral

databases used by MMSeq2 were built on the proteins of RefSeq viral genomes. This construction yielded a classification rate of

94.9% at the family level with an accuracy of 99.9% by comparing the results against the mock taxonomy derived from RefSeq data.

Host prediction of the CRVC
For predicting the domain-level hosts of the CRVC, we defined the viral host domain based on taxonomic statistics from the Virus-

Host DB.102 We established connections between crop root bacterial genomes and phages based on hits of predicted phage se-

quences and CRISPR spacers identified within bacterial genomes. The predicted phage sequences included explicit prophages

and phage fragments in 9,772 bacterial genomes. Prophages were defined by VirSorter categories 4 and 5 and geNomad’s provirus

labels, and we excluded contigs in MAGs if more than 50% genes were predicted viral according to CheckV. For phage fragments

without prophage structure, we only included those predicted from isolates and excluded MAGs to eliminate false positives caused

by binning errors. Spacer sequences within bacteria were predicted using CRISPRCasFinder v2.0.3139 with default parameters, re-

taining spacer sequences in CRISPR arrays with evidence level 4 (high confidence). In total, we obtained 18,417 phage sequences
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from 5,624 bacterial genomes and 27,952 spacer sequences from 644 bacterial genomes. To establish phage–bacterial connections

at the within the bacterial and viral genomes, we used BLAST to match these sequences to viral genomes of the CRVC and IMG/VR

sequences originating from root or soil environments. The alignment options for phage sequences were ‘-max_target_seqs 30000

and -perc_identity 95’, and for spacer sequences, the alignment options were ‘blastn-short, -dust no, -word_size 7, -perc_identity

100, -max_hsps 1, and -max_target_seqs 100000’. For phage sequences, a BLAST length of R 1 kb and an ANI of R 96% were

considered positive BLAST hits. For CRISPR spacers, only spacers matched across the whole length of spacers were considered

as positive BLAST hits (Table S6A). The definition of temperate phages was based on the classification from VIBRANT and the iden-

tification of prophages.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of bacterial species and evaluation of bacterial growth rate
To ensure the accuracy of read mapping, 3,044 species-level representative genomes were used as references. Reads of 332 root

metagenomic samples were aligned to this genome reference using Bowtie 2 v2.4.5129 under ‘end-to-end and –very sensitive’ mode.

Subsequently, InStrain v1.8.0130 was used to calculate the coverage and breadth of each sample against the bacterial genomes. A

breadth value of > 0.5 was considered to indicate the presence of a genome in the sample (Table S6D). The top ten most abundant

bacterial species in each crop root metagenomic sample were considered to be highly abundant. The peak-to-trough ratio165 of the

copy numbers of DNA near the replication origins and copy numbers of bacteria terminus points in a sample was calculated to mea-

sure genome growth dynamics. Evaluation of bacterial growth rate was conducted using Dynamic Estimator of Microbial Commu-

nities (DEMIC)131 with default parameters (Table S2D).

Quantification of metagenomic reads and feature table generation
Host-depleted, high-quality reads of metagenomic root samples were mapped against corresponding NR gene references

using Bowtie 2. A positive match was defined by an alignment identity of R 95% and an alignment length R 60% of read length.

All positivematches from theBowtie 2 SAMoutput were next extracted and the resulting filtered SAMfileswere sorted and converted

into BAM format using SAMtools v1.9.133 A non-redundant gene count table was generated using HTseq v2.0.2134 with options

‘–mode=union, –stranded=no, –type=CDS, –idattr=gene_id, –nonunique=none, –secondary-alignment=ignore, and –supplemen-

tary-alignment =ignore’. This gene count table was then correlated to the microbiome according to genes assignment to microbes

by Kraken 2, and further normalized by the gene length and count.166 The relative abundance table was scaled to 109 per sample

(Tables S4A–S4F). Taxonomic and functional feature count tables were generated based on non-redundant gene annotation. The

function feature tables were further filtered to exclude unannotated features and were normalized within each sample. Considering

the presence of some features (e.g., KOs) with extremely low abundance, accurate repeats between technical replicates were not

feasible. To reduce the interference of these features on differential abundance analysis, we defined the measurable KOs by evalu-

ating the repetition of deeply sequenced root metagenomic samples. We sequenced five root samples three times each and

compared the consistency of the relative abundance tables by calculating the Pearson correlation coefficients between each pair

of technical repeats at different abundance thresholds. The correlation coefficient curve indicated that the repeatability of KO abun-

dance was satisfactory when the threshold of relative abundance reached 3.0 3 10–5 (normalized to 1). In terms of the functional

pathway table, the technical repeatability was high (r = 0.98), so no abundance cutoff was set. To ensure accuracy, functions that

were exclusively from animals or plants were excluded (Table S4E).

Rarefaction analysis and evaluation of microbial genetic potential
To evaluate the representativeness of non-redundant genes for crop root metagenomic samples, we calculated the gene richness as

the number of included root samples increased. For each specific sample number gradient, a random shuffle of the root samples was

repeated 20 times (Figure S3A; Tables S3F). To evaluate the microbial genetic diversity for each crop species, we filtered non-redun-

dant microbial genes in at least 70% of the root samples within each dataset, integrated the gene counts across each crop species,

and defined them as representative non-redundantmicrobial genes (Figure S3B; Table S3G). The ratio of representative NRmicrobial

gene entries to the gene number of the crop genome was used to measure microbial genetic diversity for each crop.

Quantification of viruses and antiviral defense systems in metagenomic samples
The representative genomes at the species level in the CRVC and IMG/VRwere selected as references. Host-removedmetagenomic

sequences were aligned to the reference genomes using Bowtie 2 in end-to-end mode with options ‘–non-deterministic and –very-

sensitive’. SAMtools was used to sort and convert the files to BAM format. The filter mode of CoverM v0.6.1 (https://github.com/

wwood/CoverM) was used to filter reads with an alignment identity threshold of 95%. Metagenomic aligned bases and coverage

of viral genomes were calculated using CoverM with options ‘-m covered_bases and -m covered_fraction’, respectively. Viruses

with coverage of R 70% or aligned bases of R 5 kb were considered present in the metagenomic sample. Virus abundance was

computed using CoverM with option ‘-m trimmed_mean’, which calculated the average read depth after removing the 5% of bases

with the highest and lowest genome coverage (tpmeans). The obtained tpmean value was divided by the number of reads in the sam-

ple, yielding the relative virus abundance. The relative abundance of phages in each sample was calculated as the sum of the relative
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abundances of all bacteriophages in the sample. For quantification of defense systems in crop root and soil samples, the protein

profiles from DefenseFinder104 were used to annotate translated NR genes using hmmsearch v3.3.2141 with options ‘–cut_ga and

noali’. Based on the annotations and previously generated relative abundance table of NR genes, a feature table of defense-related

proteins was generated. The relative abundance of each antiviral defense system was calculated as the sum of the abundances of

mandatory proteins104 within that system.

Microdiversity calculation of viral genomes
Metagenomic data were used to analyze the intrapopulation genetic diversity (microdiversity) of viral genomes within sampled en-

vironments. We used InStrain v1.8.0130 to calculate the average nucleotide diversity (p) of each viral genome in each sample.37

For accuracy, only genomes with coverage of at least 53 across all base pairs were used for calculation. Microdiversity within

each prevalence group described in the next section was defined as the mean p value of all viruses belonging to that prevalence

group in the sample.

Definition of prevalence groups for bacterial and viral genomes
Genomes were grouped based on the prevalence characteristics of bacterial and viral genomes in crop root metagenomic samples.

Prevalence refers to the frequency at which a genomewas detected in samples from a single host crop at a single location. Genomes

with a prevalence of less than 10% or those found in only a single sample if the sample number was below 10 were defined as rare.

The remaining genomes were considered stably detected in root ecosystems. Further categorization included the following three

groups: stable presence across roots of multiple crop species at multiple locations (multi-crop multizonal), stable presence in roots

of a single crop species across multiple locations (single-crop multizonal), and stable presence in roots of a single crop species at a

single location (single-crop regional). For bacteria, there were 60 species in the multi-crop multizonal group, 99 in the single-crop

multizonal group, 455 in the single-crop regional group, and 331 in the rare group. For viruses, there were 123, 281, 1,311, and

975 species in each group, respectively.

Statistic analysis and data visualization
Comparisons between two groups were conducted using a two-tailed Wilcoxon rank-sum tests. For comparisons among multiple

groups, a Kruskal–Wallis rank sum test was used, followed by a Dunn’s test for pairwise comparisons. Multiple comparisons

were adjusted using the false discovery rate (FDR) method, with significance considered when the adjusted P value was less than

0.05. Asterisks were used to denote the level of statistical significance (*, P < 0.05; **,P < 0.01; ***,P < 0.001; ****,P < 0.0001). Multiple

groups were labeled with letters based on adjusted P values. A correlation analysis was conducted using the cor.test() function in R

with Spearman’s rho, which calculated correlation coefficients andP values. Similar to the previous procedure, multiple comparisons

were adjusted using the FDRmethod, with significance defined as an adjusted P value of less than 0.05. Downstream data process-

ing and visualization were performed using R 4.3.1 and packages including tidyverse, reshape2, rstatix, vegan, PMCMRplus, and

multicompView for data processing and statistical analysis and ggforce, ggpubr, ggVennDiagram, UpSetR, ComplexHeatmap, vir-

idis, RcolorBrewer, and patchwork for visualization. Visualization of phylogenetic trees was conducted using ape, picant, pytools,

ggtree, ggtreeExtra, and ggnewscale. Note that tree-branch lengths in Figures 5A and 6C do not reflect taxonomic distance.
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Supplemental figures

Figure S1. Characteristics of the CRBC and publicly available genomes, related to Figures 1 and 2

(A) Genome quality of the CRBC. The 6,699 genomes in the CRBC are displayed according to the genome completeness and contamination rates. Genome

numbers are color-coded based on their sources, with isolates represented in red and MAGs in dark blue.

(B) Distribution of genome quality in the CRBC and GTDB. The pie chart shows the composition of genomes at different quality levels.

(C) Genomes in the CRBC show comparable quality to those in the GTDB. The boxplots show log10-transformed N50 length (top) and contig number (bottom) in

each genome of the CRBC and GTDB. Isolates are shown in the left and MAGs are shown in the right, respectively.

(D) Quality of published crop root bacterial genomes. The 3,073 published genomes of crop root bacteria are displayed according to the genome completeness

and contamination rates.

(E) The taxonomic composition of published crop root bacterial genomes (left) and the CRBC (right) at the order level. The bacterial taxonomy is displayed at the

order level.

(legend continued on next page)
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(F) Overlap of bacterial species in the CRBC and published crop root bacteria. The species are color-coded based on their genomic sources, with CRBC isolates

represented in blue, CRBCMAGs in green and published crop root genomes in beige. Note that 76.9% ([1,620+82]/2,212) of genomes not reported before in crop

roots are from the CRBC isolates.

(G) Overlap of CRBC genomes with GTDB. The comparison between 6,699 CRBC genomes and over 60,000 GTDB representative genomes shows a total of

1,817 undefined CRBC species, with 1,329 identified from CRBC isolates and 448 from CRBC MAGs.

(H) The CRBC MAGs showed lower growth rates than the CRBC isolates within and between taxa. The bacterial isolates were analyzed by DEMIC based on the

ratio of the coverage at the origin and terminus (peak-to-trough ratio [PTR]) of bacterial genomes within crop root microbial populations (STAR Methods,

adjusted p < 0.05, Wilcoxon rank-sum test).

(I) The reference genomes showed source specificity in rhizosphere metagenomic data. The boxplot shows proportions of metagenomic reads of crop rhizo-

sphere samples in maize (n = 8) and wheat (n = 29) aligned to genomes in public databases and the CRBC. The abbreviations are: NCBI, NCBI RefSeq database;

GTDB, Genome Taxonomy Database; GEM, the Genome from Earth’s Microbiomes catalog; UHGG, the Unified Human Gastrointestinal Genome collection;

OMD, the Ocean Microbiomics Database (adjusted p < 0.05, Kruskal-Wallis rank-sum test and Dunn’s test).
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(legend on next page)
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Figure S2. Characteristics of PGP functions and BGCs in the CRBC and published crop root bacterial genomes, related to Figure 3

(A) Distribution of genomes across their PGP functions. Bar plots show the number of PGPs in each genome. Note that among the 6,109 high-quality genomes of

crop root bacteria, 5,231 genomes were found to encode at least one tested PGP function.

(B) Coexistence patterns of nutrient utilization functions within individual bacterial genomes. The number and taxonomy of genomes for each coexistence pattern

are shown in the stacked bar plot in the upper panel. The lower panel with vertical lines illustrates co-existent functions (nitrogen fixation, phosphorus and

siderophore biosynthesis) within individual genomes. The number of genomes for each PGP group is shown in the lower right panel.

(C) Coexistence patterns of crop growth functions within individual bacterial genomes. The number and taxonomy of genomes for each coexistence pattern are

shown in the stacked bar plot in the upper panel. The lower panel with vertical lines illustrates co-existent functions (biosynthesis of IAA, CK, and GA) within

individual genomes. The number of genomes for each PGP group is shown in the lower right panel.

(D) Coexistence patterns of stress tolerance functions within individual bacterial genomes. The number and taxonomy of genomes for each coexistence pattern

are shown in the stacked bar plot in the upper panel. The lower panel with vertical lines illustrates co-existent functions (biosynthesis of ACCd, ethylene and SA)

within individual genomes. The number of genomes for each PGP group is shown in the lower right panel.

(E) Distribution of BGC classes according to the length of gene clusters. The bars are color-coded based on BGC classes. The lengths of NRPS are relatively

higher than other BGC classes.

(F) Composition of BGC classes in each bacterial phylum. Proteobacteria are displayed at the class level due to their excessive species number.

(G) Relationship between the BGCs percentage in the genome and the corresponding genome size. Each dot represents a bacterial genome. The scatter plot

illustrates the BGC percentage and genome size in each genome. The density of data in each axis is shown on the left or top of the scatter plot. Note that

Actinobacteriota and Firmicutes have a higher proportion of genes encoding BGCs.

(H) Distribution of genome number and GCF richness of families in Actinobacteriota. The bar plot and boxplot show the genome number (left) and GCF number

(right) in each family of Actinobacteriota. Families are arranged in descending order according to the median of GCF richness.
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(legend on next page)
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Figure S3. Taxonomic and functional patterns of root metagenomes from multiple crops in diverse soils, related to Figure 4

(A) Accumulation curves indicate that the number of non-redundant microbial genes in the root metagenomes of each crop species is approaching saturation.

Data from wheat, rice, maize, and Medicago are presented in different colors. Each observation was sampled 20 times without replacement.

(B) The gene count comparison between the root metagenomes and host crop genomes. The bar plot shows gene count of non-redundant genes within the root

metagenomes (upper) compared with corresponding crops (lower). The number with bracket under the host name represents the ratio of gene numbers between

the root microbiome and the corresponding host.

(C) Relative abundance of archaea, bacteria, fungi, protists, and viruses in the root metagenomes of wheat, rice, maize, and Medicago. Note that bacteria

contribute an average of 95.7% of overall microbial relative abundance within the root metagenomes.

(D) Taxonomic and functional composition of root metagenomic samples. Boxplot showing pairwise Bray-Curtis dissimilarity with root metagenomes of multiple

crops grown in diverse soils based on taxonomic and functional compositions (n = 332, adjusted p < 0.05, Wilcoxon rank-sum test).

(E) Families enriched or depleted in root metagenomes of each crop species derived from diverse soils. The Venn diagram illustrates overlaps of bacterial families

enriched (upper, green) and depleted (bottom, brown) in roots of wheat, rice, maize, andMedicago frommultiple datasets. Each area is color-coded according to

the number of functions in the area.

(F) Genera enriched or depleted in root metagenomes of each crop species derived from diverse soils. The Venn diagram illustrates overlaps of bacterial genera

enriched (upper, green) and depleted (bottom, brown) in roots of wheat, rice, maize, andMedicago frommultiple datasets. Each area is color-coded according to

the number of functions in the area.

(G) Microbial functions enriched or depleted in root metagenomes of each crop species derived from diverse soils. The Venn diagram illustrates overlaps of

independent datasets reflecting the functions consistently enriched (upper, green) and depleted (bottom, brown) in roots of wheat, rice, maize, and Medicago.

Each area is color-coded according to the number of functions in the area.

(H) Functional KOs enriched or depleted in root metagenomes of each crop species derived from diverse soils. The Venn diagram illustrates overlaps of inde-

pendent datasets reflecting the functional KOs consistently enriched (upper, green) and depleted (bottom, brown) in roots of wheat, rice, maize, andMedicago.

Each area is color-coded according to the number of functions in the area.
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Figure S4. Distribution of 146 root-enriched KOs in the crop root bacterial genomes, related to Figure 4

(A) Clustering of 146 root-enriched KOs in the crop root bacterial genomes. The central heatmap shows the frequency of root-enriched KOs across crop root

bacterial genomes. The frequency is calculated based on the percentage of genomes containing the KO in each genus. The distributions of KOs and genomes are

clustered separately using the ward.D2 method. KOs are clustered into 5 groups according to their distribution in crop root bacteria and colored according to the

(legend continued on next page)
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superpathways to which they belong. The taxonomy information of genomes is presented at the phylum level, with Proteobacteria at the class level due to their

excessive abundance. Note that phylogenetically related genera exhibited similar functional patterns of root enrichment.

(B) Functional landscape of 146 root-enriched KOs in the genomes of crop root bacteria. Bar plots show the cumulative counts of root-enriched KOs that are

prevalent in over 50% of genomes within each bacterial genus. KOs are grouped and color-coded based on their KEGG superpathways. Bacteria genera are

arranged according to their phylogeny.
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(legend on next page)
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Figure S5. Quality, protein content, and distribution of the CRVC, related to Figure 5

(A) Workflow of CRVC construction. Viral contigs were predicted from 9,772 bacterial genomes in the CRBC and published databases and 332 crop root

metagenomes, using a combination of software tools including geNomad, VirSorter, and DeepVirFinder. The removal of host regions and estimation of viral

completeness were conducted using CheckV. Viral genomes underwent quality control and dereplication at 100% ANI, yielding 9,736 non-redundant microbial

viral genomes designated as the CRVC. Note that 65.5% of CRVC genomes are derived from CRBC genomes and our crop root metagenomes.

(B) The composition of the CRVC. The doughnut chart illustrates the proportion and number of viruses in the CRVC according to the domain of hosts. The CRVC

comprises 9,736 non-redundant viruses, including 9,278 bacteriophages, 7 archaeal viruses, 33 eukaryotic viruses, and 418 entries with unclear hosts (STAR

Methods).

(C) Genome quality and length distribution of the CRVC. The bar plots show the length distribution of CRVC genomes. CRVC genome completeness is cate-

gorized into three quality groups: 723 complete genomes, 4,041 high-quality genomes (>90% completeness), and 4,972 medium-quality genomes (50%–90%

completeness). Note that nearly half (48.9%) of the genomes in the CRVC are over 90% completeness (high-quality and complete). The median length of viral

contigs is 40.6 kbp.

(D) Overview of CRVC quality. The upper pie chart represents the distribution of the CRVC genomes across different quality categories as evaluated by CheckV.

Note all of the CRVC genomes exceed the medium-quality level with completeness over 50%. The middle pie chart illustrates the distribution of 723 complete

CRVC genomes acquired through the direct terminal repeats (DTRs) or inverted terminal repeats (ITRs) methods, with methods and confidence levels color-

coded for clarity. The bottom pie chart illustrates the proportion of the CRVC genomes derived from the CRBC genomes, our crop root metagenomes, and

published crop root bacteria, each color-coded for clarity.

(E) Majority of the CRVC species-level clusters are not reported in public databases. The Venn diagram illustrates overlaps of the CRVC species-level clusters

(vOTUs) with the public viral databases including, RefSeq, MGV, GOV2, and IMG/VR. In the IMG/VR database, viral genomes sourced from both root and soil

environments were incorporated into the analysis.

(F) Annotation rate of the CRVC proteins by different reference databases. The bar plot shows the percentage of viral proteins in the CRVC annotated using the

KEGG, Pfam, VOGDBdatabases, respectively. In total, we predicted 587,992 proteins within the CRVC, of which the annotation rates for these databases ranged

from 12.3% to 36.1%. Note that the low annotation rates across various reference databases suggest that a significant portion of the CRVC comprises proteins

with unknown functions.

(G) Functional annotations of the largest 34 protein clusters within CRVC. The bar plot shows the number of proteins in each abundant protein cluster, and only

protein clusters with numbers greater than 180 are shown. The annotation of each protein cluster is color-coded according to annotation categories: known,

unknown functions, and no hit. Note that a substantial proportion of protein clusters are either with unknown functions or lacking matches in databases.

(H) Comparison between the CRVC and public viral databases using genomes derived from metagenomes. The bar plot shows the number of metagenome-

derived CRVC viral clusters that are shared with publicly available databases at the genus level. Bar plots showing that 650 metagenome-derived unreported

CRVC clusters whose genomes are distinct from those in published viral databases, including viruses from IMG/VR,MGV, andGOV2. The CRVC exhibits a higher

shared presence of viruses with IMG/VR soil and roots than other ecosystems, suggesting the ecosystem specificity of viral distribution.

(I) Viral distribution in crop root habitats. The stacked bar plot illustrates the composition of viral categories in the root microbiomes of each crop species. Using

prevalence characteristics, viruses are categorized into four prevalence groups: stable presence across roots of multiple crops grown inmultiple locations (multi-

crops multizonal, green), within roots of a single crop species in multiple locations (single-crop multizonal, purple), within roots of a single crop species in a single

location (single-crop regional, orange), and viruses with prevalence lower than 10% of samples (rare, yellow).

(J) The characteristics of temperate and lytic viruses in crop root microbiomes. The bar plots illustrate the log10-transformed relative abundance (left), prevalence

(middle), and microdiversity (right) of temperate and lytic viruses in 332 crop root metagenomic samples (adjusted p < 0.05, Wilcoxon rank-sum test).
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Figure S6. Phage-bacteria connections within bacterial genomes and crop root ecosystems, related to Figure 6

(A) Phage abundances in the root microbiomes of multiple crops are higher than those in corresponding soils based on the IMG/VR version 4 database. The

boxplot shows the median and quartiles of phage relative abundance in root metagenomic samples fromwheat, rice, maize,Medicago, and corresponding soils.

Statistic differences are assessed using the Wilcoxon rank-sum test, root, n = 332; soil, n = 75. **** represents adjusted p < 0.0001.

(legend continued on next page)
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(B) The distribution of antiviral defense system families in the bacterial genomes. The histogram shows the distribution of the number of defense system families in

each bacterial genome.

(C) The prevalence of bacterial defense systems in crop root bacterial genomes. The heatmap illustrates the prevalence of each bacterial defense system at the

phylum level. Proteobacteria are shown at the class level due to their excessive abundance. The bar plot (left) showing the prevalence of each bacterial defense

system in all crop root bacteria.

(D) Substantial proportion of genomes within major crop root bacteria phyla exhibit connections with phage genomes. Bar plot shows the number and proportion

of crop root bacterial genomes with phage hits according to phage contigs andCRISPR spacers detected in bacterial genomes. Each bar represents the genome

number within each bacterial phylum (class level for Proteobacteria). Bacterial genomes with phage hits are colored orange, those with CRISPR spacer hits are

colored blue, and genomes with phage hits detected by both methods are shown in purple.

(E) Large majority of phage species-level clusters show specific connections with bacteria. The bar plot illustrates the host range of phage species-level clusters

at different taxonomic levels. Note that most phage clusters have a narrow host range and can only interact with bacteria within a single genus or species.

(F) The phage-bacteria connections identified by genomes show higher correlation efficiency than links only determined by co-occurrence in crop root eco-

systems. The boxplot illustrates the Spearman correlation coefficients of temperate phage-bacteria connections detected via genomes (dark green) or via

co-occurrence (light green), as well as the Spearman correlation coefficients of lytic phage-bacteria connections detected via genomes (dark red) or via co-

occurrence (light red). Statistic differences are assessed using the Wilcoxon rank-sum test, root, n = 332. **** represents adjusted p < 0.0001.

ll
OPEN ACCESS Resource


	CELL13857_proof.pdf
	Crop root bacterial and viral genomes reveal unexplored species and microbiome patterns
	Introduction
	Results
	The CRBC comprises 6,699 genomes of root bacteria
	The CRBC enhances crop root bacterial genome diversity and metagenomic read coverage
	CRBC genomes harbor diverse functions and metabolite genes for crop growth benefits
	Conserved genetic characteristics of root microbiomes across multiple crop species grown in diverse soils
	The CRVC reveals unreported viral genus-level clusters and enhanced viral genetic diversity in crop root ecosystems
	Phage-bacteria interactions in crop root ecosystems

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Plant materials and growth conditions

	Method details
	Bacterial isolation, cultivation and genomic DNA extraction
	Whole-genome sequencing and de novo assembly of bacterial isolates
	Harvesting and metagenomic sequencing of root microbiome samples
	Quality control, assemble and gene prediction of metagenomic samples
	Binning and refinement of MAGs
	Collecting genomes of crop root bacteria from public databases
	Quality control, dereplication, and species clustering of bacterial genomes
	Comparison of bacterial species within the CRBC and representative species in the GTDB database
	Taxonomic classification and phylogenetic analysis of root bacterial genomes
	Reads coverage of root and rhizosphere metagenomic samples using different genome databases
	Functional annotation and BGC and antiviral system identification of bacterial genomes
	PGP functions in bacterial genomes
	Comparison of BGCs in crop root bacterial genomes and public databases
	Taxonomic classification and functional annotation of crop root metagenomic samples
	Prediction and quality control of viral genomes
	Gene prediction, functional annotation, and protein clustering of viral genomes
	Clustering of viral genomes at the species and genus level
	Taxonomic classification of the CRVC
	Host prediction of the CRVC

	Quantification and statistical analysis
	Quantification of bacterial species and evaluation of bacterial growth rate
	Quantification of metagenomic reads and feature table generation
	Rarefaction analysis and evaluation of microbial genetic potential
	Quantification of viruses and antiviral defense systems in metagenomic samples
	Microdiversity calculation of viral genomes
	Definition of prevalence groups for bacterial and viral genomes
	Statistic analysis and data visualization





